Covering the TI99/4A and Geneve home computers

MCRAUpendium

Q 6 issues Canada/Mexico $42.50
Volume 15 Number 5 September/October 1998

Q 6 issues other countries surface mail
____ Surface mail $40
___ Air mail $52

Outside U.S., pay via postal or interna-

tional money order; personal checks w .

from non-U.S. banks will be returned. m

ADDRESS CHANGES: Subscribers who 5

move may have the delivery of their Add]ng Visitors at chicago
alED Faire to receive free

most recent issue(s) delayed unless ;
MICROpendium is notified six weeks in |

software from
Europe

PERIODICALS

advance of address changes. Please your i
old address as it appears on your '
mailing label when making an address
change.

F——————————
Check each item ordered (or
list on separate page and enter
total amount here

$

|
|
|
|
|
|
No sales tax on magazine subscrip- - -
I tions. Texas residents add 8.25% I Feell“g a Ilule
sales tax on other items, including inQ
back issues and disk subscriptions. | . [:lﬁllS[l‘ﬂl]hl]hlﬂ H
' See Page 16
I Name, I
| | ;
| Address |
| |
I I
| City. |
I - Extended BASIC
| State. ZIP I § S R ST
|] g :
i | The set of numbers at the top of your | _g E 4 Cla‘uStrophObla'
| | mailing label indicates the cover date of I g o 2 FINDPRCNT
the last issue of your subscription. a8
| ESE UNMERGE
SO —— 4| E58
L —

Page 2 - MICROpendium * September/October 1998

MiCROpendium

MICROpendium (ISSN
10432299) is published bimonthly
for $35 per year by Burns-Koloen
Communications Inc., 502
Windsor Rd., Round Rock, TX
78664-7639. Periodical postage
paid at Round Rock, Texas.
POSTMASTER: Send address
changes to MICROpendium, P.O.
Box 1343, Round Rock, TX 78680-
1343.

No information published in the
pages of MICROpendium may be used
without permission of the publisher,
Burns-Koloen Communications Inc.
Only computer user groups

While all efforts are directed at
providing factual and true information
in published articles, the publisher
cannot accept responsibility for errors
that appear in advertising or text
appearing in MICROpendium. The
inclusion of brand names in text does
not constitute an endorsement of any
product by the publisher. Statements
published by MICROpendium which
reflect erroneously on individuals,
products or companies will be corrected
upon contacting the publisher.

Unless the author specifies, letters
will be treated as unconditionally
assigned for publication, copyright
purposes and use in any other
publication or brochure and are subject
to MICROpendium’s unrestricted right
10 edit and comment.

All correspondence should be
mailed to MICROpendium at P.O. Box
1343, Round Rock, TX 78680.

Foreign subscriptions are $42.50
{Canada and Mexico); $40 surface mail
to other countries; $52 airmail to other
countries.

All editions of MICROpendium
are mailed from the Round Rock
(Texas) Post Office.

Mailing address: P.O. Box 1343,
Round Rock, TX 78680.

Telephone & FAX: (512) 255-1512

Internet E-mail:
jkoloen@earthlink.net

Home page: http:/
www.earthlink.net/~jkoloen/

John Koloen Publisher

Laura Burns Editor

Newsbytes

CHICAGO FAIRE CHANGES LOCATION,
AND ZLOTORZYNSKI HEADS GROUP 5
Extended BASIC

AMSLERTEST ...cvovveneenicesisasnnecscnnene 6
CLAUSTROPHOBIA «.cceevecverensesesasnsones 26
FINDPRCNTcoecreecrirrnccsercrenenas 34
UNMERGE 42
The Art of Assembly

STILL AFLOAT 1
Hardware

ADDING A LEDcocuvvviinirrrniircniennn 16
PROTECTING MODEMS FROM SURGE
DAMAGE v 17
MIDI-Master

A MUSICAL ADVENTURE «...cuvmmirmenenne 18
RAM Usage

How 32K sTACKS UP ..

File compression
WiTH PCF, ARCHIVER AND ARCHIE .. 42

Reviews

MDOS 6.0 48
MICRO-REevIEWS: DowNLOAD FILE
CONVERTER, NOTEPADSOccoveererenes 51
User Notes

CHECKING FOR/NEXT ERRORS, AND
RUNNING ASSEMBLY FROM XBASIC .. 52

MICROpendium « September/October 1998 Page 3

IICHANGE NOTICE!!

l THE LOCATION HAS BEEN CHANGED I

of the

16th ANNUAL CHICAGO
TIINTERNATIONAL WORLD FAIRE

14 NOVEMBER 1998

The NEW LOCATION is

Northminster Presbyterian Church
2515 Central Park Ave.

Evanston IL 60201
Room 2

9:30 a.m. - 4:00 p.m.
Demonstrations-Seminars-User Groups
Door Prize Drawings, Free Parking,

Bus. and Rapid Transportation to Door
for further information contact: Hal Shanafield (847)864-8644
Hotel Information Available

All aftendees to the Faire will receive a disk of brand
new software. This disk will be available only to Faire
attendees and is not copyable.

Page 4 - MICROpendium ¢ September/October 1998

Lubbock loses Tl plant

Tom Wills of the SouthWest Ninety-Niners is feeling that the group did the
right thing by holding Fest West ’98 at Texas Instruments’ Lubbock facility this
year. This site, for many years the heart of TI's consumer electronic division and
the birthplace of the TI99/4A, is phasing out. TI expects to eliminate 680 jobs in
Lubbock, although one-third of the employees will be offered other positions at
plants in Dallas and Houston. T1 is also closing the Midland, Texas, plant, whose
employees will be offered jobs in Sherman, Texas. Lubbock political and civic
leaders were devastated by the news. For further information, log on to http://
www.lubbockonline.com.

CHICAGO GROUP OVERCOMES OBSTACLE

It’s good to see that Hal Shanafield and the Chicago user group have a Plan B
in place for this year’s Chicago TI Faire. The fair was originally planned for an
American Legion hall. The Chicago group even advertised it in the July/August
MICROpendium. But a day or two after the issue came out, it was learned that
the Legion hall had already been booked, sending the user group scrambling.
Hal has since found a nearby Presbyterian church with available space. And
that’s where the fair will be held. You can look at the article on page 5 for
additional details, and mark your calendar for Nov. 14.

Those who attend this year’s faire will receive a free copy of a new disk
manager that operates with SCSI and other drives. Berry Harmsen will bring it
over from Holland. We’ll have more about it in the November/December issue.
Those who miss the faire will be able to purchase the program from Berry.

TESCH FINISHES GENEVE REPAIRS AND UPGRADES

Tim Tesch of S&T Software is trying to put Geneve repairs and upgrades in
order and asks customers who have not received promised items to contact him.

If you are waiting for software or documentation, he says, “Let me know
what you are waiting for and whether you paid any fairware fee for it. People I
spoke with at Lima should contact me as well, whether they contacted me
recently or not.”

If you are waiting for Myarc hardware, “I have completed all repairs. If
anyone else has hardware that was sent to Cecure Electronics and have yet to get
it back, let me know ASAP, as I don’t know how long I will be able to continue
working on fixing/upgrading hardware.”

If you plan to upgrade or repair equipment “requests for updates or repairs
must be made via e-mail or the postal service. I will no longer accept verbal
requests nor will I conduct business over the phone.” This is due to the fact that
he travels often and doesn’t want his household “bombarded by telephone calls.”

For more information, contact Tesch at ttesch@juno.com or at Tim Tesch;
1856 Dixie Road; Port Washington, W1 53074. Include your U.S. postal shipping
address with all correspondence.

NEWSBYTES

MICROpendium * September/October 1998 « Page 5

Chicago Faire has new location

A new site has been named for the
16th Annual Chicago International
World TI Faire Sept. 14. The new site
is Room 2 at the Northminster
Presbyterian Church, N2515 Central
Park Ave., Evanston, Illinois, accord-
ing to Hal Shanafield of the Chicago
TI Users Group, the hosts for the
event. A conflict prevented the Faire
from being held at the American
Legion Post in Evanston as previously
scheduled.

Seminars will include those by
Bruce Harrison, who will also
introduce some new products, and
Lew King, who will discuss Term 80
on the Internet. In addition, attend-
ees will receive a free disk being
brought to the Faire by Berry
Harmsen of the Dutch TI users
group, an “unhackable” disk with new
European software. Shanafield notes
that this will be available only at the
event as it cannot be copied.

Following is information on hotel
accommodations for TI Faire
participants:

Evanston: Omni Orrington Hotel,

Zlotorzynski heads
Will County group

Tony Zlotorzynski is the new
president of the TI Users Group of
Will County (Illinois). Tony Z. took
office September 1, succeeding Bob
Petter. Petter served as president for
two years,

1710 Orrington Ave., (847) 866-8700;
rates $155 single/$165 double;
American Automobile Association/
American Association of Retired
Persons discounts available.

Holiday Inn, 1501 Sherman Ave.,
(847) 965-6400; rates $134 single/
double, AAA/AARP discounts.

Morton Grove: Best Western,
Morton Grove Inn , 9424 Waukegan
Rd., (847) 0965-6400; rates, 1 queen
$49 plus tax, 1 king $55 plus tax, 1
queen double with sofa sleeper $55
plus tax, 2 double $58 plus tax; 10
percent discount for AARP, GEnter-
tainment Book Coupon and AAA;
includes continental breakfast, HBO/
cable/in-house movies; microwave/
refrigerator available upon request.

Grove Motel, 9110 Waukegan,
(847) 966-0960; rates $45 single, $50
double, including tax and discount;
free coffee in lobby; cable/HBO and
Cinemax.

Suburban Motel, 9115 Waukegan
Rd., (847) 470-0300; rates $40 single,
$46 double, $46 King.

Shanafield adds that attendees can
call him for information about the
“ever-popular Admiral Oasis Motel,
which, if not yet torn down, has
colorful rooms with strategically
placed mirrors available for around
$302

For further information, contact
the Chicago Users Group, P.O. Box
7009, Evanston, IL 60204-7009, or
call Shanafield at (847) 864-8644.

Page 6 - MICROpendium * September/October 1998

Extended BASIC program
tests vision

The following program, AMS-
LERTEST by Jack B. Cunningham, is
designed as a computer-based version
of a vision test called the Amsler Grid.
This program, written in Extended
BASIC, reproduces an Amsler Grid
recording chart and outputs results to
a printer. This and other tests are used
by optometrists and ophthalmologists
to test patients for such disorders as
macular degeneration.

We caution that this is not to be
used as a substitute for advice from a
physician.

The program prints the grid with
“lights,” or white “X’s”, seen and those
missed. The short test uses 200 lights
and takes about six minutes. The long
test uses 400 lights and takes about 12
minutes, with a rest period after the
first 200 lights.

To use the program, sit directly in
front of the center marker as it
appears on the monitor (marked
onscreen by two orange squares) at a
distance four times the width of the
screen display. Cover one eye before
starting the test.

At the sound of the tone press a
key every time you see a light,
keeping your eye focused on the
squares at all times. It is difficult to
keep your eye squares and make take
some time to get used to it.

AMSLERTEST
100 CALL CLEAR [209

AMSLER GRID TEST
JACK
7198

N\ # # #HH #/

#-0CCLUDED- 130
VISIBLE 70 35 %

110 PRINT ™ AMSLER GRID T
EST 1995":7~:~ B
Yoo JACK CUNNINGHA
M7 "% v 1167

120 PRINT “PRINTS GRID WITH
LIGHTS SEENAND THOSE MISSED.
SHORT TEST (200 LIGHTS) 1S 6
MINUTES, &” !135

130 PRINT “LONG TEST (400 LI
GHTS) IS 12MINUTES WITH REST
AT 200.7:~":“PRESS ANY KEY
TO CONTINUE” 1194

140 CALL KEY(0,K,S)!1187

150 IF S=0 THEN 140 !147
160 CALL CLEAR !'209

170 PRINT “VIEWING POSITION-
DIRECTLY INFRONT OF CENTER
MARKER AT ADISTANCE 4 TIMES
THE WIDTH “:!150

180 PRINT “OF THE SCREEN DIS
PLAY. COVERONE EYE.”:"7:~
AT THE SOUND OF THE TONE, WHE
N YOU ARE READY TO START” !1
02

190 PRINT “PRESS ANY KEY AND
THEN PRESSA KEY EVERY TIME
YOU SEE A LIGHT. KEEP YOUR
EYE ON THE CENTER!”:”” 1227
200 PRINT “REMEMBER—CALL
YOUR DOCTORANY TIME YOU SEE
A CHANGE!”:”":#":"READY???
PRESS ANY KEY” !070

210 CALL KEY(0,K,S)!187

220 IF S=0 THEN 210 !217
230 CALL CLEAR !209

240 INPUT “NAME-":NAMES !166
250 CALL CLEAR !209

260 INPUT “DATE MM DD YR-":D
ATE$ 1214

270 CALL CLEAR !209

280 INPUT “PRINT TEST RESULT
S? - ENTER Y OR N (CAPS ONLY
)=":Q$ 1234290 IF
Q$="Y")+(Q$="N")THEN 300 EL
E 280 !197300 CALL CLEAR !
9310 INPUT “E
TER 2 FOR SHORT

TEST 4 FOR LONG
TEST-":TL !095
320 IF (TL=2)+(TL=4)THEN 330
ELSE 310 !024
330 OCC=0 !140

340 F=0 1253

MICROpendium ¢ September/October 1998 Page 7

350 CALL CLEAR !209
355 CALL COLOR(2,1,1)'171
360 CALL SCREEN(5)!150
362 FOR R=5 TO 24 1123
364 CALL HCHAR(R,7,45,20) 100
7
366 NEXT R !232
368 CALL CHAR (45, “8080808080
8080FF”) 1021
369 CALL CHAR (46, "8080808880
8080FF”) 1030
370 CALL CHAR(111, *007E7E7E7
E7E7E00") 1132
375 CALL CHAR (47, ”8182848890
AQCOFF”) 1059
377 CALL CHAR(92, “80C0A09088
8482FF”) 1058
380 CALL COLOR(10,9,1)!227
390 CALL COLOR(12,16,1)!020
400 CALL CHAR(35, "80A8A8FCAS8
FCA8FF”) 1154
410 CALL COLOR(1,1,1)!170
420 RANDOMIZE !149
430 DS=INT(RND*(2-1+1))+1 !1
97
440 GOSUB 1020 1079
450 CALL SOUND(100,380,15)11
84
460 CALL SOUND(100,320,15)!1
78
470 FOR D=1 TO 10 1100
480 CALL KEY(0,K,S)!187
490 IF S<>0 THEN 520 1210
500 NEXT D 1218
510 GOTO 450 !018
520 FOR W=1 TO 200 !169
530 NEXT W 1237

Continued on page 8

Page 8 « MICROpendium ¢ September/October 1998

3

Continued from page 7

540 IF DS>1 THEN 1520 ELSE 1
540 !'151
550 READ R C
560 IF R=1 THEN 1560 !037
570 IF R=0 THEN 1380 !111
580 IF F=0 THEN 630 !114
590 IF C/2=INT(C/2)THEN 620
1105
600 C=C+1 !255
610 GOTO 630 !199
620 C=C-1 !000
630 CALL HCHAR(R+2,C,120)!08
2
640 FOR D=1 TO 50 !104
650 CALL KEY(0,K,S)!187
660 IF S<>0 THEN 710 !144
670 NEXT D !218
680 CALL HCHAR (R+2,C,35)1038
690 OCC=0CC+1 !035
700 GOTO 550 !119
710 CALL HCHAR(R+2,C, 46)!040
720 FOR W=1 TO 200 !169
730 NEXT W !237740 GOTO
50 !'119750 CALL COLOR
2,2,1)11727
2 CALL COLOR
1,2,1)!171755 CALL SCREEN
6)!151758 R=5
1014760 C=7 !
01770 CALL HCHAR(R,C,92)!
09780 R=R+2 !
30790 C=C+2 !
00800 IF C<>17 THEN 830
050810 R=R+

1029820 C=C
1 1255830 IF R<25 THEN 77

1068

840 R=5 1014

850 C=26 1051

860 CALL HCHAR(R,C,47)1109
870 R=R+2 1030

880 C=C-2 1001

890 IF C<>16 THEN 920 !139
900 R=R+1 1029

910 Cc=C-1 1000

920 IF R<25 THEN 860 [158
930 A$="0OCCL” 1015

940 p=14 !061

950 Y=3 1019

960 GOSUB 1580 1130

970 A$=STR$ (OCC) 1064

980 P=15 1062

990 vY=3 !019

1000 GOSUB 1580 !130

1010 RETURN !136

1020 CALL HCHAR(14,17,111)!'0
98

1030 CALL HCHAR(15,16,111)!0
98

1040 RETURN !136

1050 GOSUB 750 !064

1060 IF (Q$="N")THEN 1210 !1
13

1070 OPEN #1:”PIO” 1253
1075 PRINT #1:CHR$ (27) ; CHRS (
33)1229

1080 PRINT #1:”AMSLER GRID T
EST” :NAMES : DATES 122

1090 PRINT #1:CHR$(27);CHRS (
84) ;716" 1207

1096 PRINT #1:CHR$ (27); CHRS (
88); 1163

1100 FOR R=5 TO 24 !123
1110 P$="" 1249

1120 FOR C=7 TO 26 1112

MICROpendium * September/October 1998 * Page 9

1130 CALL GCHAR({(R,C,X)!143
1132 IF X=45 THEN 1138 !188
1134 IF X=46 THEN 1138 !189
1136 GOTO 1140 !'199

1138 X=32 1069

1140 P$=P$&CHRS (X) 1249

1150 NEXT C !217

1160 PRINT #1:P$ 1188

1170 NEXT R (232

1180 PRINT #1:CHR$(27) ; CHRS (
65) 1234

1182 PRINT #1:CHR$ (27) ; CHRS (
89) ;1164

1184 VS=TL*100-0CC !189
1186 VP=VS/TL !113

1190 PRINT #1:*#-OCCLUDED-";
occ 1099

1192 PRINT #1:“VISIBLE”;VS;V
P;"%” 1124

1195 PRINT #1:CHR$ (27) ; CHRS (
34)!230

1200 CLOSE #1 !151

1210 GOTO 1210 1013

1220 DATA 19,13,22,20,20,14,
16,14,14,26,15,21,14,14,17,9
,12,22,19,17,16,22,21,9,20,1
8,10,24,6,10 !212

1230 DATA 18,12,10,18,16,12,
8,8,18,14,20,8,6,24,13,17,16
,20,14,20,13,15,12,12,9,25,2
2,10,15,13,1,1 1202

1240 DATA 18,12,10,18,16,12,
8,8,18,14,20,8,6,24,13,17,16
,20,14,20,13,15,12,12,9,25,2
2,10,15,13 112

1250 DATA 19,13,22,20,20,14,
16,14,14,26,15,21,14,14,17,9
,12,22,19,17,16,22,21,9,20,1

8,10,24,6,10 1212
1260 DATA 15,17,4,16,10,14,8
,14,5,21,13,21,14,12,12,16,2
1,25,15,11,6,22,12,18,19,21
18,26,5,25 1112
1270 DATA 11,21,17,13,4,18,2
2,14,18,16,17,23,10,12,17,11
,4,8,21,17,5,19,15,15,3,15,1
6,18,6,8 1026
1280 DATA 19,7,14,18,20,24,5
,9,8,26,11,15,14,8,8,16,11,7
,22,12,4,12,18,10,9,21,15,9,
7,19 1097
1290 DATA 16,16,7,13,17,15,5
,7,20,12,9,11,21,23,13,25,11
,19,6,26,22,16,5,23,3,21,22,
22,5,17 1222
1300 DATA 11,25,7,15,21,11,1
6,26,4,10,9,9,22,24,4,14,3,1
7.,19,23,21,15,6,18,19,9,14,1
6,3,25 !188
1310 DATA 9,17,17,19,10,20,2
1,7,14,24,12,10,21,13,21,21,
4,24,8,22,13,23,8,12,17,7,15
,23,5,11 '006
1320 DATA 9,15,17,21,5,13,9,
13,14,22,6,20,15,7,7,17,12,2
0,16,8,13,19,18,20,9,7,19,11
,11,11 1183
1330 pATA 22,8,15,19,22,18,1
7,25,18,22,16,10,15,25,12,14
,10,8,10,16,18,18,5,15,11,9,
21,19,12,8 1132
1340 DATA 19,15,11,23,20,26
3,19,20,20,13,11,8,18,3,23,2
0,22,7,23,18,8,10,22,4,20,10
,10,6,16 1253

Continued on page 10

Page 10 » MICROpendium * September/October 1998

1

Continued from page 9 1450 CALL HCHAR(15,16,45) 105

1350 DATA 8,20,3,13,6,12,18, 5
24,8,10,4,22,13,7,6,14,13,13 1460 F=1 1254
.7,7,10,26,3,7,7,9,9,19,8,24 1470 RESTORE !148

1145 1480 GOTO 450 !018
1360 DATA 14,10,4,26,22,26,3 1490 CALL HCHAR({14,16,UC)!15
,11,12,26,17,17,11,17,19,19, 5
3,9,16,24,7,21,11,13,19,25,7 1500 CALL HCHAR(15,17,VC) !15

,25,9,23 1033 8

1370 pATA 13,9,7,11,20,16,12 1510 GOTO 1050 !109
,24,20,10,0,0 !163 1520 RESTORE 1220 !037
1380 IF TL=2 THEN 1050 !116 1530 GOTO 550 !119

1390 IF F=1 THEN 1490 !210 1540 RESTORE 1240 !057
1400 CALL GCHAR(14,16,UC)!15 1550 GOTO 550 !119

4 1560 RESTORE 1260 !077
1410 CALL GCHAR(15,17,VC) !15 1570 GOTO 550 !119

7 1580 FOR Z=1 TO LEN(A$)!246
1420 CALL HCHAR(14,16,111)!0 1590 CALL HCHAR(P,Y,ASC (SEG$
97 (A$,2,1))) 1249

1430 CALL HCHAR(15,17,111)!0 1600 Y=Y+1 !043

99 1610 NEXT Z !240

1440 CALL HCHAR({14,17,45)!05 1620 RETURN !136
5

OF ASSEMBLY PART 72
Still Afloat

BY BRUCE HARRISON

This month’s column is a continuation of last month’s. You'll need to get the
sidebar from last month in front of you to understand what we’re writing about.
Got it? Okay, ready or not, here we go.

Sidebar 71 is a complete program to demo some typical floating point math
operations. You'll notice that the source starts off with more than the usual
EQUates. These are of course not absolutely necessary, but are used so that there
will be mnemonics available to make the bulk of the source code a bit easier to
grasp.

FAC stands for the Floating point ACcumulator. This is a very important
memory location for any of the floating point operations. It refers to the eight

MICROpendium ¢ September/October 1998 « Page 11
HE ART OF ASSEMBLY

bytes starting at address >834A in the RAM Pad. That’s where floating point
numbers get placed by the ROM and GROM floating point math routines that
we'll use in this program. ARG, which stands for floating point ARGument, is
another eight-byte portion of RAM Pad, starting at >835C. This is used for a
second floating point number. For example, the addition routine adds the
number in FAC to the one in ARG, and puts the result at FAC. The subtraction
routine subtracts the number at FAC from the one at ARG, and puts the
difference at FAC. Some operations, such as the computation of the sine, use
only the number at FAC, but also use a stack area in VDP RAM to store inter-
mediate results. To accommodate those operations, we’ve set up a stack address
(VSTACK) in VDP RAM using >1000 as the start of the stack.

STARTING UP

The code section, which begins at label START, first sets the workspace
pointer to our own workspace at label WS. Next it clears the word at >8374
(KEYADR) to insure that we’re using key-unit zero. Next we set RO to the value
of our VDP Stack (>1000), then stash that number in RAM Pad at >836E,
which serves as the pointer for stack use by some routines. Thus those routines
will put stuff into VDP RAM at a place which won’t interfere with our screen
displays or character definitions.

GETTING THE NUMBERS

At label RESTR, set up for getting our first number input from the user. First
we “point” RO at row 1, column 4, then put a prompt on the screen. Now we BL
@ACCEPT to allow user input.

ACCEPT uses four data lines following the BL to determine its parameters.
The first word after the BL determines the screen position for accepting key-
board input. In this case, that’s row 2, column 3. The next data word is the field
length, in this case 28 characters, which is actually more than enough for
numeric inputs. The third data word is a signal to the routine that determines
whether or not to clear out the input field before accepting input. In this case,
it’s 1, so the field will be cleared by the ACCEPT routine. Any number here
other than zero will make the field clear. Zero will allow any previous content to
remain in the field. The fourth parameter is of no importance in this case, but is
the address of a block of memory to store the user’s input as a string. Here,
we’ve set that to the address of TEMSTR, a block of 30 bytes in our data section.
The string placed there won’t actually be used in this program, but there has to
be a block of at least one byte more than the field length. This way, we can use
the same ACCEPT routine for either strings or numbers.

After the four data words, we take the content of R0, and place it at location
FAC12 (>8356). This happens just after we’ve exited from the ACCEPT routine.
RO at this point contains the VDP address of the first byte of the input field.

Continued on page 12

Page 12 » MICROpendium « September/October 1998

HE ART OF ASSENMIBLY PART 72

Continued from page 11
Placing that address at >8356 is necessary to allow us to use the Convert String
to Number (CSN) routine via XMLLNK. That routine examines the contents of
VDP RAM starting at the address that we’ve put in FAC12 (>8356), and
converts what's there into a floating point number at FAC. If what’s there does
not represent a number, FAC will contain zero in its first two bytes, meaning the
input is regarded as zero.

The routine CSN keeps reading the string until either it runs out of digits or
it finds a character that’s not part of the numeric set. For this routine, the
numeric set consists of the numbers 0-9, the plus or minus sign, and the capital
E (for exponent). Any other character found in the input string will be regarded
as non-numeric, and will terminate the conversion routine. Thus if we put a
number, like 2.135, into the 28 byte input field, the conversion routine will stop
when it finds the space just after the 5. It will correctly report the number 2.135
into FAC in floating point format. (We explained that format last month.) The
way we’ve written this program, the number input must be left-justified in the
input field. Any leading spaces before the number starts will cause the conver-
sion to yield zero.

Once this first number has been accepted, we want to save it to our own data

memory, so that accepting another number can be done without losing this one.

For that, we use a special little subroutine called MOVNUM. To use that, we
load R9 with the address FAC, and R10 with the address NUM1, which is a
block of eight bytes set aside in our Data Section. MOVNUM then copies the
eight bytes from FAC to the block at NUM1.

All of this now repeats for the second number input, except that number gets
copied into the block of bytes at label NUM2.

Now the first math operation we want to perform is just to add these two
floating point numbers. First we put a string on the screen to label this as the
sum of the numbers, then we use MOVNUM to take the number we placed at
NUML into the ARG block. The number at NUM2 is still present in FAC, so we
don’t need to put it there for the addition. Thus we have two floating point
numbers at ARG and FAC, these being NUM1 and NUM2, respectively.

We now use the ROM routine FADD through XMLLNK to add these two
numbers. XMLLNK finds and executes the FADD routine, which places the
result at location FAC as eight bytes. Now we clear an 18-character area just
after the label on the screen, and then use our subroutine DISNUM to display
the number taken from FAC. The subroutine DISNUM uses a GPL routine
called Convert Number to String (CNS) through GPLLNK. That routine takes
the floating point number at FAC and converts it to a string located in RAM
Pad. When that routine exits, the byte at FAC12 (>8356) contains the length of
the string, and the byte at FAC11 (>8355) contains the low order part of the

MICROpendium * September/October 1998 « Page 13

HE ART OF ASSEMIBLY PART 72

address at which the string is to be found.

To get this string on the screen, we take the byte at FAC12 into R2, right
justify it, and then take the byte from FAC11 into R1, right justify that, then add
>8300 to R1 so it points at the string’s location in RAM Pad. The desired
address on the screen is already in R0, 50 a simple VMBW operation puts the
number string on the screen at the correct location. The string will always have
a length of at least one, so we needn’t check for a zero length string. If the
number was zero or positive, there will be a space in the first character of this
string. If the number is negative, the first character will be a minus sign.

OTHER MATH OPERATIONS

We proceed now to perform other math operations on the two numbers we
accepted. They have been left unsullied at the locations NUM1 and NUM2 in
memory, so we can reuse them at will. In all cases from here on, we have to
assume that whatever was left at ARG and FAC have been corrupted, so our first
order of business before any more math operations is to use MOVNUM to place
NUM1 at ARG and NUM2 at FAC. Remember that for subtraction, the number
at FAC gets subtracted from the number at ARG. Thus, when our FSUB finishes
(via XMLLNK), FAC will contain ARG-FAC. We go through this process a
couple more times, putting the product of NUM1 * NUM2 on the screen, and
the result of NUM1 / NUM2 on the screen.

The next to last operation we perform is to take the sine of the number at
NUML. This computation uses a routine in GROM, so we have to use GPLLNK
instead of XMLLNK. In our source, we’ve included the Warren/Miller GPLLNK,
mainly to avoid the well known problems that TI’s GPLLNK presents. We don’t
have to put anything into ARG in this case, but just put the number from
NUMI into FAC. This routine uses that VDP stack we mentioned at the
beginning, putting “God-knows-what” into the stack as intermediate results.
When it’s finished, there’s a floating point number at FAC that equals the Sine of
whatever number (in radians) was at FAC when we called the GPLLNK routine.
This result is always a number between -1 and 1, inclusive.

The final operation is a comparison of the two numbers. For this, we place
NUMI at ARG and NUM2 at FAC as usual. After the XMLLNK performs the
FCOM routine, we have to examine the GPL status byte (>837C) to see the
result.

We check first to see if the numbers are equal, since that’s the easiest test. We
just do CB @STATUS,@ANYKEY, and if those two bytes are equal, so are the
numbers at FAC and ARG. If they’re not equal, we put the STATUS byteina
register (e.g. R3), then strip off all but the >4000 bit. If that result is not zero,
then the number at ARG was greater than the one at FAC. If the result is zero,
given that the numbers are not equal, then the one at ARG must be less than the

Continued on page 14

Page 14 - MICROpendium ¢ September/October 1998

HE ART OF ASSEMBLY

Continued from page 13
one at FAC. The code in last month’s sidebar performs just this way, and puts
one of three messages on the screen to indicate the relationship between NUM1
and NUM2. One can also test for a “logical high” relationship using the >8000
bit, but we can’t see any sense in doing that for floating point numbers.
Variations You CaN Try

In your own work, you might want to try out the idea of allowing leading
spaces to be present in the input field. This might come in handy if, for example,
a default positive number string were in the input field to start with. Such a
string starts with a space, which must then be skipped over after an ACCEPT
operation.

The following discussion assumes that our own version of ACCEPT, as
included in last month’s sidebar, is being used. Among other things, that means
that the length of the string typed in the field, excluding trailing spaces, is in R2
upon return from the routine. We'll show here the code that would allow your
routine to skip over any leading spaces.

BL @ACCEPT Use Accept subroutine
DATA 32*5+2 Row 6, Col 3

PART 72

DATA 28 Field Length 28
DATA 0 Don’t Clear field
DATA TEMSTR String Buffer
READ1 BLWP @VSBR Read byte from field
CB R1,@ANYKEY Is that a space?
JNE GNUM1 If Not, jump
INC RO Next spot on screen
DEC R2 Dec string length count
JGT READ1 If positive, repeat read

GNUM1 MOV RO,@FAC12 Put RO at >8356
BLWP @XMLLNK Use XML linkage vector
DATA CSN Convert string to number
This method will work even if the field was left blank. In such a case, after the
DEC R2, R2 will become a negative number, and the JGT test will fail, so the
CSN routine will be used right away, and will report zero at FAC. No doubt
some of our readers will find a more efficient way to do this, but the way we've
shown is certain to work. Each time a leading space is found in a non-null entry,
the pointer in RO advances one spot and another read is done until a non-space
character is found.
THE “CARET” CASE
We've fooled around with the other operations allowed through GPLLNK,

MICROpendium ¢ September/October 1998 Page 15
HE ART OF ASSEMBLY PART 72

and found that other functions work as given in the Editor/Assembler manual,
with one notable exception. That exception is the “Raise number to power”
routine (in BASIC or Extended BASIC). The E/A manual says that you can use
this routine, which we call the “caret” routine, by placing the first number at
ARG, the power to which it’s to be raised at FAC, then using GPLLNK. This
doesn’t seem to work! The routine seems to lose its way somewhere along the
line, returning to our code with a meaningless number placed in FAC. Here then
is another plea to our readers. If any of you has discovered some trick to make
the “caret” routine work from Assembly code, please let us know, and we’ll pass
that on to others.

We hope these two articles will satisfy your hunger on the subject of floating
point numbers for a while. Next month’s topic is undecided at present, but since
we're now writing more than a year ahead of publication, we’ve got plenty of
time to decide on that topic.

READER-TO-READER

Rich Gilbertson, 1901 H St., Vancouver, WA 98663-3352, writes:

Recently I purchased an Iomega Zip drive from a PC Mall. My first problem
was the connectors for the SCSI card to the 25 pin on the Zip the internal 50-
pin cable on the SCSI card from Western Horizon needs to be run through two
conversion to be useful. I purchased part MCS-FM506 that is a SCSI Centronics
50/F w/bracket to internal IDC 50/M w/4-inch ribbon cable, and MCS-
MM2556 SCSI 6-feet cable DB25M to Centronics 50/M. This combo can be
purchased from almost any local parts supply house for about $39 compared to
$64 for SCSI2 connectors.

The Zip drive works very well with the T and is faster than the two 42-Meg.
Teac SCSI2 drives in my system. My 200-Meg. Rodine is SCSI1 and is a little
slower than the Teac’s. I had to set the Zip to drive 7 as my Rodine responds to 1
and 6. For $100 the Zip is a good buy.

1 suggest that if anyone wants a copy of the 42 Meg of my entire library, send
me a Zip disk and a self-addressed stamped envelope. The copy will only work
with a Western Horizon SCSI card, but will be everything I have. Most of my
library is source of GPL and assembly.

Bruce Harrison has new e-mail address

Bruce Harrison, MICROpendium columnist and assembly language expert,
has a new e-mail address. You can reach him at rottencat1@aol.com.

Page 16 - MICROpendium * September/October 1998

HARDWARE PROJECT

Have a card in need of an LED?
Here’s one method of adding one

BY RALPH GOODWIN

The following article originally
appeared in the newsletter of the 9T9
Users Group. Readers who undertake
this project do so at their own risk—
Ed.

Do you have a PEB card that
doesn’t include an LED? Want to
add one? Here’s what you what
need to do.

Parts placement on the card are
not too critical but everything
should be kept as close as possible.
The 555 can be piggy-backed on
top of another chip but take notice
that the 555 does not have power
pins assigned the same as TTL
chips. The other way

There are no doubt other case
designs but I think these are the most
common. The rest of the parts are
easy enough, just follow the diagram
and light up another window in your
PEB (See diagram).

— it

—

—

REQUIRED PARTS
555 timer
220 ohm resistor (any wattage)
1000 ohm resistor (any wattage)
0.1 uf capacitor (ceramic disc or
similar) any voltage
22 uf capacitor (electrolytic or
tantilum) 8 volt or higher
LED any color (TI specs are amber
or yellow) some hook-up wire

involves a little epoxy,
cement the chip down
and solder pin 1 directly
to the ground plane.
Placing the LED on the
board about 1-inch up
from the bottom, and 1/
2-inch in from the front
edge should place the
LED in position to be in
line with the window.
Solder the cathode to the
ground plane and use a
dab of epoxy to hold it in
place. The cathode is the
lead that is usually
identified by a flat or
notch in the case and/or
the shorter lead.

connect this lead
o PIN 15 of the
15-245 chip (enahle}
exdsting on the board

MICROpendium « September/October 1998 « Page 17

Protecting computer modems
from surge damage

BY ROSS MUDIE

Computers with modems, just like

fax machines, are prone to damage
due to surges from lightning or high
voltage electrical faults. When a high
voltage power line develops an earth
fault, or lightning strikes an earthed
object near the customer’s premises
or the telephone exchange, the
momentary high current into the
earth causes a potential gradient
across the earth’s crust which can
result in a large earth potential
difference between the earth at the
telephone exchange and the earth at
the customer’s premises (earth
potential rise).

The telephone line from the
exchange serves to deliver the
telephone exchange earth potential to
the line side of the computer modem
or fax machine. If the momentary
difference in earth potential between
the line side of the modem and the
mains earth of the modem sufficient-
ly exceeds the break down voltage of
the line isolation gap in the modem,
it is possible for a “flash over” to
occur in the modem and for very
large currents to flow. This usually
has the effect of causing serious
damage in the modem and some-
times the attached computer.

There are a number of products in
the marketplace which can reduce the
incidence of such damage. These

devices must be connected in the
telephone line and the power to the
modem/computer or fax machine to
be effective. Just protecting the power
or the phone line independently will
not be effective.

Modem protection devices operate
by limiting the amount of voltage
difference between the telephone line
and the mains power earth of the
modem in addition to the voltage
across the line and on the mains
connection, by using a combination
of Gas Arresters and MOV type surge
suppressors.

The simpler (and usually cheaper)
surge suppression products just
provide a “shunt” type of over-
voltage protection (gas arrester). This
clamps the phone line relative to the
mains earth. The more complex
suppression products usually include
phone line to mains earth clamping,
in addition to series and shunt-surge

suppression in both the phone line
connection and the active-neutral,
active-earth, and neutral-earth of the
power.

The secret of successful protection
of the modem or fax machine is to
prevent the voltage difference
between any two parts of the device
being protected from exceeding the
flash-over ratings.

Aspects to avoid are:

Continued on page 18

Page 18 - MICROpendium « September/October 1998

Continued from page 17

* Wiring away from the fax or
modem after the protection which
can provide a “back door” for a
surge to enter the device.

* Separated protection in the power
and phone line where a large surge
pulse potential could instanta-
neously occur between the earths.
There is nothing that can protect

from a direct or very close lightning
strike. The best policy is to unplug
from both the phone line and the
power in periods of thunderstorm

MIDI-MASTER

activity or when the modem is not
being used.

The best surge protection known
for modems and faxes is a FaxGuard
manufactured by Critec.

It is in your own interest to
provide surge protection for your
modem and computer since tele-
phone companies do not accept
liability for lightning damage to
customer-owned or rented equip-
ment associated with the phone
service.

The New MIDI-Master

A Musical Adventure

BY BRUCE HARRISON

We start with a sincere thank you
to Mike Maksimik, who graciously
permitted use of his original source
code for the creation of a new
generation of MIDI-Master. Our
original exposure to this fine pro-
gram was a revelation. Being able to
control all the power of a modern
electronic instrument from our
faithful TI was a terrific experience.
While we’re about making thank
yous, here’s one for Jim Krych, who
encouraged and supported our
efforts on MIDI-Master.

THE ULTIMATE GOAL

From the outset of our “messing
around” with MIDI-Master, the goal
was to create a version for TI owners
who have both the original program
(Version 2.3) and the new Super AMS

Card. Along the way, however, we
decided that certain improved
performance features could be added
that would enhance the capability of
the program even for those without
the AMS Card. Thus was born MIDI-
Master Version 2.5Z, with numerous
added and improved features. There
are two sub-versions of 2.5, with the
one called 2.5Z being for those
without AMS, and 2.5B for those who
have AMS. Both have all of the
improved performance features, but
the AMS version has the added one of
being able to handle much larger
pieces of music. The AMS version has
now (June 1998) been updated so
that it will work with BOTH the
SW99ers SAMS card and the SGCPU
card’s AMS emulation. That’s why
what was 2.5A is now 2.5B.

MICROpendium * September/October 1998 « Page 19

THE “BiGGIE”

Dolores P. Werths, our resident
musician, found one thing sorely
needed in Version 2.3. That was the
ability to control the volume of
individual voices. That capability,
which she has in Cakewalk on our
PC, was just not possible in MIDI-
Master, because there was only one
volume control, and that applied to
all voices simultaneously. In real
music, one sometimes wants one
voice or another (melody, chords, or
bass) to be louder than the others or
softer than the others. Lack of this
ability led to her doing all of her
MIDI work from the PC and putting
our copy of MIDI-Master “on the
shelf”

Now, in our new version 2.5Z, we
at last have the capability to control
the volume of each voice individually.
Thus the capability nears that of PC-
based MIDI software. Each voice has
its own “volume control byte”, and
that can be changed at any time in
the music without affecting the
volume of any other voice. For the
MIDI musician, this should be the
one most important new feature.

Many other features have been
added. In the old MIDI-Master’s
input fields, there was no delete,
insert, or erase capability, as we're
used to finding in ACCEPT AT
situations. In the new version, FCTN-
1 (delete), FCTN-2 (insert), and
FCTN-3 (erase) are all incorporated.
This makes correcting mistakes in the
input fields much easier. While we
were at it, we made the cursor blink

rate tied to the vertical interval timer,
so the blink will be the same on
either TI or Geneve. In the old
version, the rate was fine on the
Geneve but very slow on the TIL.

Even small things that were a
minor annoyance have been fixed. In
the original, for example, the on-
screen volume control could be run
past the legal limits, with sometimes
strange results. In the new version,
the on-screen volume won’t go lower
than 0 nor higher than 127. The delay
factor, which controls speed of
playing, could in the original be run
down to zero, which led to a stoppage
of play after a delay. That’s been fixed
so that delay won’t ever go to zero
from the keyboard.

THE PROGRAM IMAGE SAVE

In the old MIDI-Master, even a
16-bar song, when saved in “Pro-
gram” (aka memory image) format
would create three files on disk that
added up to 100 sectors! This always
struck us as a real problem, because
disk space costs. In the new version,
we have the program determine just
how much of the 24K memory is
actually filled by the music, and save
only that much in the Program
file(s). Now, for example, a short song

may occupy only 10 or so sectors in
just one file, instead of 100 sectors. In
other words, the program has been
given more smarts about what needs
to be put out to disk. When loading
memory image files, the new version
will give an error report if the first file
in the series is not found, but won’t

Continued on page 20

Page 20 - MICROpendium * September/October 1998

MIDI-MASTER

Continued from page 19
bother reporting when it can’t find
the second or third, as it will assume
you know what you're doing. It was
done this way in preparation for the
AMS version, in which case we don’t
know when loading how many files
there are in the series. Also in
preparation for the AMS version, we
fixed it so that when the program
changes to load the next file in the
series, the screen display updates to
let you know what’s happening.

THE OuT OF MEMORY CASE

In the old versions of MIDI-
Master there was no indication when
the program had used up all of the
24K “high” memory while compiling
a source file. Everything would
appear normal until you played the
piece, and then somewhere toward
the end voices would drop out. This
was particularly annoying since there
had been no warning given. In the
new versions, both the AMS and non-
AMS, the program tells you in plain
English on the screen when it runs
out of room in a 24K block.

TxE IMPROVED ERROR TRAPS

The “memory filled” error trap is
just one example of many where
we’ve modified the error trapping to
be a bit more “user friendly”. For one
thing, there are no more “Fatal File
Error” reports. We don’t think a
program should kill anyone over a
lousy file error. Those cases will now
report as simply “File Error” without
implications of mortality. There were
two error traps that could be really
annoying. The most annoying was

the case where one forgot to put the
CHARALI file on the working copy of
the disk. The old program would
report FATAL FILE ERROR, then ask
you to put a disk with CHARALI in
Drive 1. That was fine for some cases,
but suppose you'd put the program
into a Ramdisk or on a hard drive,
The program would put you into a
repeating error process that you
couldn’t fix without exiting the
program, and there was no exit at
that point except the on-off switch.
In the new versions, there’s an “escape
hatch” in this error trap so that
pressing FCTN-9 will get you out of
the program,

The next most annoying thing was
the case of Line 1 of the source file.
Line I in the old program had to have
three fields, two of which the pro-
gram ignored. The first field was for
the name of the piece (not used), the
second for the number of voices to be
assigned (essential), and the third was
for the “version number” (not used).
If all three fields were not there, this
line would be rejected. In the new
versions, we’ve fixed it so that only
the name and the number need be
there, with version number optional.
But that wasn’t the only annoying
thing about the Line 1 error. If a
syntax error were detected in any line
after 1, the program would show you
the errant line on screen, then
continue compiling with the next line
after a keypress. This in itself could
be a problem, as any blank lines or
“tabs” lines in the file would become
syntax errors, and in the case of blank

MICROpendium * September/October 1998 * Page 21

lines, showing the line on screen
would be no help. If, however, line 1
had a syntax error, no indication
would be given at all, but the pro-
gram would just exit to its main
menu immediately.

Several changes have been made. If
Line 1 is incorrect, it will produce a
Syntax Error report and show that
line on the screen. Since the program
can’t continue compiling without
getting the number of voices, it will
exit back to the menu, but at least
you'll know why it did this. Those
mysterious syntax errors on blank
lines won’t happen any more, because
the program now ignores blank lines
except for incrementing the line
count. The same goes for any “tabs”
records in the file. They’re counted,
but not scanned, so they won’t cause
syntax errors.

In old versions, if the program
found the end of the input file
without finding a record that
contained END it would issue an
error report. Since the end is the end
with or without END, we’ve had the
program simply ignore the end of file
error and go back to the menu. Thus
if you forgot that END line, the
program will forgive you without a
hiccup.

Last but not least, if you're
compiling a really badly mangled file,
and getting lots of syntax errors, you
can escape from completing the
compilation by just pressing FCTN-9
when a syntax error report is on the
screen.

Tue “SHUT UP” PROBLEM

MIDI-Master allows you to “stop
the music” in three ways, two
documented and one undocumented.
While in play mode, you can press P
for Pause or FCTN-9 to exit play. The
undocumented way is to press the 1
key, which also exits play. In most
cases, however, the keyboard would
simply go on playing the last notes it
had been sent, so it would drone on
all day unless you either turned its
power off or took it out of MIDI
mode. This was very annoying, even
to the non-musicians in the house. In
our new versions, there’s a little
subroutine called SHUTUP, and the
program cycles through that when
you press FCTN-9, P, or 1. This
routine looks to see what notes are
currently playing, and sends out each
of those notes with a zero “velocity”
byte. This tells the keyboard to stop
playing those notes immediately. Our

testers thought this a wonderful
feature.
THe “WHat Dip 1 LOAD?”
PROBLEM

Once the old version loaded either
a source or memory image file, there
was no way to tell what had been
loaded. Now, in the Play mode,
there’s a “Now Playing” indication
which tells you on the screen the
name of the file whose contents are
being played. This can be especially
handy when using the Album, as you
may have missed the name when
album was loading it. If a series of
memory image files was loaded, this
indication will show the first name in

Continued on page 22

Page 22 « MICROpendium * Sept

MIDI-MASTER

Continued from page 21
that series, which is of course the
“master” file for the series.

THE RANDOM PLAY PROBLEM

In MIDI Album’s original form,

after selecting a few files to play, you
had the choice of playing them in the
order shown on the file directory or
in random order. Like many people,
we would assume that random would
mean each selected file would play
once and only once, but in random
order. NOT SO! In that original
MIDI Album, the random play would
contunue “forever,” with some
selections playing three or four times
while others in the selected list might
not play until a half hour later. This
meant that most users avoided the
Random Play option.

In our new versions, Random Play
means what you probably thought it
should. Each selected file gets played
once and only once, but in random
order. When all have been played, you
return gracefully to the menu. When
testing Album, by the way, we found
the use for the keypress 1 to stop the
current music instead of FCTN-9. If
you're playing from Album, pressing
1 stops the current selection and
makes Album go on to the next one,
if any more are waiting. FCTN-9, on
the other hand, stops play and
returns to the menu. This came in
handy for us during testing, so we
could test Album without actually
having to listen to each selection all
the way through. That’s probably
what the 1 keypress was put there for.

LARGER MusicaL WORKs

Okay, now we're into the subject
of the AMS version, 2.5B. If you don’t
have AMS, you can skip reading this
part, but beware that if you do read
this part and own MIDI-Master, you
may be sorely tempted to go get
yourself an AMS just to take advan-
tage of this “breakthrough” in
software for the AMS card.

First, as you probably know, there
are different sizes of AMS cards in
terms of total memory capacity. So
far, there are cards of 128K, 256K,
512K, and 1024K (aka 1 Meg). In all
software that your author has written
for the AMS, there’s a section of code
at the start of the program which
measures the size of the card in use
and tailors the program’s operation
to use the capacity found. MIDI-
Master 2.5B is no exception. It
“knows” what size card you have, and
won't let you exceed that capacity.

In the case of MIDI-Master, the
program resides entirely in the Low
memory at pages 2 and 3 on the card.
It maps in pages to act as the high
memory, where the music data is
stored, starting with pages 4 thru 9 as
the first “group”, then 10 thru 15 as
the second, and so on. Because they
have to be mapped six at a time, the
musical capacity is measured by how

many times six divides into the
number of pages from 4 onwards. A
small chart will illustrate:

AMS Size Music Capacity
128K 4 groups of 24K
256K 0 groups of 24K

512K 20 groups of 24K

MICROpendium * September/October 1998 Page 23

MIDI-MASTER

1024K 42 groups of 24K

This means simply that the
amount of music data that can be
loaded when compared to the non-
AMS MIDI Master is multiplied by
the number of “groups” listed above.
Thus a 256K card can handle works
10 times the size that can be handled
by the normal MIDI-Master. An
example will perhaps make clearer
what this means.

Harold Timmons, of Columbus,
Ohio, used MIDI-Master to program
Gershwin’s Rhapsody in Blue. That’s
a large piece of music. In the standard
MIDI-Master, it comprised four
separate source files, so that the way
to play it was to load in a section, play
that portion, then stop and re-load
for the next section. This is a difficult
way to listen to music, when there are
three stoppages to load new material
into memory. Mr. Timmons very
kindly provided us a copy of his SNF
source files so we could use them in
testing the AMS version of MIDI-
Master. Without Mr. Timmons’
generous act, we might never have
finished this version, simply for lack
of a test subject. Once we had his
source files in hand, the pressure was
on to get the AMS version finished.

No revision of his files was
required. In each section, he'd
thoughtfully used the same number
of voices, and assigned them to the
same MIDI channels. It works like
this: One uses the compile function
(option 4) and types in the name of
the first source file. (e.g.
DSK2.RAPSODY1) Compiling takes

a while, as each section fills more
than 2/3 of the 24K memory group.
When that finishes, a prompt saying
“MORE? (Y/N)” appears on the
screen. If you answer Y for Yes, the
program puts you back in the input
file field, with the previous entry still
there, so you can change it to the next
file, in this case DSK2.RAPSODY?2.
Unbeknownst to you, but knownst to
me, when you pressed Y, the AMS
card was paged so that this new file
will compile into pages 10 through 15
of the AMS, leaving the first part still
there in pages 4 thru 9. Again you
wait, then repeat the process, answer-
ing Y two more times, compiling into
pages 16 thru 21, then 22 thru 27.
The program keeps track of what’s
the highest “group” that’s been used,
and you don’t even have to think
about that. Finally, after compiling
RAPSODY4, you press N for No at
the MORE prompt. You're back on
the menu, but now ALL of Gershwin’s
Rhapsody in Blue is sitting there in
pages 4 through 27 of your AMS card.
Hook up the keyboard and press 2.
The entire Rhapsody will play
from beginning to end. The program
“knows” when a section has finished,
and very quickly sets the AMS to start
playing what’s in the next group of
six pages. It knows what the highest
group loaded is, so at the end of the
fourth section, youre back to the
menu. Now if you've got an initial-
ized disk handy, press 3 to save all this
in memory image format. We use
short file names, so we started with
Continued on page 24

Page 24 - MICROpendium ¢ September/October 1998

MIDI-MASTER

Continued from page 23
RBA for the first file name. Saving to
floppy takes a while, as there are
twelve sequential files in this case, but
it all works, updating the last letter of
the file name on the screen each time
it writes a new file.

Now we could make much shorter
work of getting the Rhapsody into
our AMS by using these memory
image files. Just select 1 from the
menu, type in DSKx.RBA, and all
twelve files will be piled into your
AMS card, ready to play. As an
experiment, we made room on one of
our Ramdisk drives for these twelve
files, and that made the loading
process very quick indeed.

Works of even longer duration
could be handled by our 256K card,
since the Rhapsody uses only four of
its ten groups. Just imagine the
possibilities! Perhaps a whole
symphony played through MIDI-
Master!

You GorTa HAVE CABLES!

To use either new version, you

must have the special cable supplied
by either Crystal Software or Cecure
Electronics. That’s one thing we can’t
supply. Through special arrangement
with Cecure, Richard Bell of Staten
Island, New York, can now also
supply the original MIDI-Master
package, including cables. Contact
him at 38 Bement Ave. Staten Island,
NY 10310, or via e-mail
swim2shore@email.msn.com.
Richard will also include a copy of
the updated version 2.5Z or 2.5B, as
appropriate to your needs. Both
versions are still copyrighted by
Michael J. Maksimik, and are being
made available as such. Make a
backup for your own use, but
“sharing” is not permitted.

BeroRE WE LEAVE, MORE THANKS

Throughout the development of

these new versions, two people
contributed their time and efforts in
testing the many pre-release editions.
Thanks then to Harold Timmons and
Richard Bell for all their help and
encouragement.

RAM USAGE

How 32K of RAM memory
stacks up

BY PETER HUTCHISON
The following article has appeared in several user group newsletters.—Ed.
Just what is a 32K memory and how does it work and what is it used for? I
hope this article will answer these questions. If you run Extended BASIC with
expansion RAM and type the command SIZE, you'll see:

13928 BYTES OF STACK FREE

24511 BYTES OF PROGRAM SPACE FREE

MICROpendium * September/October 1998 * Page 25

Note that differing values will be given if you have a disk system, the state of
CALL FILES, and the version of Extended BASIC you are using.

The 13K part is the RAM that comes in the console (VDP RAM) and the 24K
part is the expansion RAM. Where has the other 8K gone to? The 8K part is for
machine code routines and is not used by Extended Basic. Extended BASIC can
LINK to machine code routines in this area. Pure machine code programs can
fill all 32K if required.

Another question is — why am I limited to 12K programs if I use cassette for
storage? The answer is the way the T1 saves code. If you have one, look at the
Editor/Assembler manual, page 297-SAVE. It says “the SAVE operation writes a
file from VDP RAM to a peripheral” How much VDP RAM do we have?
Thirteen kilobytes. In fact, the TI copies the program from expansion RAM to
VDP RAM and then to the peripherals. This explains the short delay when you
type SAVE CS1. Longer programs are allowed on disk as the console switches to
an alternate format that saves programs as shorter records instead of dumping

them all at once. This format is “Internal Variable 254, but you needn’t worry

about that.
The 32K RAM area does not have continuous addresses (Editor Assembler

manual page 400):
>0000 console ROM (2x4K ROM chips)
>2000 low memory expansion (8K)
>4000 peripheral ROMS for Device Service Routines
>6000 reserved for modules (8K} — ROM or RAM
>8000 memory mapped devices, VDP, GROM, SOUND, SPEECH

>A000 High memory expansion (24K)

If you use Extended BASIC, High Mem will contain your BASIC program
and numeric data. Console RAM will contain strings, and data for the screen
display, sounds, sprites, and pattern definitions.

Low memory, on the other hand, will be used (if at all) by CALL LOAD and
CALL LINK commands, for loading and linking to machine code routines.
Expansion memory can be used by other modules, such as Editor/Assembler
(32K to store machine code programs), Mini-Memory (as Editor/Assembler, or
as two RAMdisks), TI-LOGO (32K required), etc.

With the disk system, 32K is essential as the disk operation takes up some
memory from VDP RAM.

The 32K RAM cannot be used by TI BASIC or modules not designed for its
use. RAMdisks may incorporate rather than replace the 32K standard expan-
sion. For example, the Myarc 512K card uses 32K for normal purposes, and the
remainder for RAMdisk or printer buffer uses.

Page 26 - MICROpendium * September/October 1998

ICLAUSTROPHOBIA

The object is to keep
the critter contained

The object of
Claustrophobia, by
W. Van Santvliet, is
to contain an
onscreen critter
that wants to be
free. You do this by
having a spider-like
creature push
blocks around the
screen using the
arrow keys. Just to
make it a little more
complicated, some

of the blocks are stationary.

The game includes a number of
difficulty levels so that once you've
accomplished your task at one level
you can look forward to doing it
again at a more difficult level. Of
course, to survive you have to avoid
collisions between your spider and
the critter you’re trying to contain.
Collisions end the game.

CLAUSTROPHOBIA

0 CALL BXB !068

100 CALL CLEAR !209

110 CALL SCREEN(5)!150

120 CALL CHAR(128, "007E7E7E7
E7E7E00") 1140

130 CALL COLOR(13,10,5)!019
140 CALL SOUND(500,262,0,523

,0)1072

150 CALL HCHAR(3,3,128,3)!17
6

160 CALL VCHAR(4,3,128,4)!19
2

170 CALL HCHAR(7,4,128,2)!18
0

180 CALL SOUND(500,294,0,587
,0)1087

190 CALL VCHAR(9,6,128,5)!20
1

200 CALL HCHAR(13,7,128,2)!2
29

210 CALL SOUND(500,330,0,659
,0)1078

220 CALL HCHAR(1,9,128,3)!18
0
230 CALL VCHAR(2,9,128,4)!19
6

LAUSTROPHOBIA

240 CALL VCHAR(2,11,128,4)!2
38

250 CALL HCHAR(3,10,128) 1048
260 CALL SOUND(500,349,0,698
,0)1091

270 CALL VCHAR(2,15,128,5)!2
43

280 CALL VCHAR(2,17,128,5)!2
45

290 CALL HCHAR(6,16,128)1057
300 CALL SOUND(500,392,0,784
,0)1085

310 CALL HCHAR(8,13,128,3)!2
31

320 CALL VCHAR(9,13,128,2)!2
45

330 CALL HCHAR(10,14,128,2)!
017

340 CALL VCHAR(11,15,128,2)!
033

350 CALL HCHAR({12,13,128,2)!
018

360 CALL SOUND(500,440,0,880
,0)1076

370 CALL HCHAR(6,21,128,3)!2
28

380 CALL VCHAR(7,22,128,4)!2
45

390 CALL SOUND(500,494,0,988
,0)1094

400 CALL HCHAR(2,26,128,3)!2
29

410 CALL VCHAR(3,26,128,4)!2
45

420 CALL VCHAR(3,28,128,2)!2
45

430 CALL VCHAR(4,27,128,2)!2

MICROpendium * September/October 1998 « Page 27

45

440 CALL HCHAR(6,28,128)!060

450 CALL SOUND(500,523,0,131

,0)1067

460 CALL HCHAR(10,27,128,3)!

022

470 CALL VCHAR(11,27,128,4)!

038

480 CALL VCHAR{11,29,128,4)!

040

490 CALL HCHAR(14,28,128)!10

8

500 CALL SOUND(500,587,0,147

,0)1084

510 CALL HCHAR(17,3,128,3)!2

30

520 CALL VCHAR(18,3,128,4)!2

46

530 CALL HCHAR(19,4,128)!058

540 CALL SOUND(500,659,0,165

,0)1084

550 CALL HCHAR(15,9,128,3)!2

34

560 CALL VCHAR(16,9,128,4)!2

50

570 CALL VCHAR(16,11,128,4)!

036

580 CALL HCHAR(19,10,128)!10

4

590 CALL SOUND(500,698,0,175

,0)1088

600 CALL HCHAR({16,16,128,3)!

026

610 CALL VCHAR(17,16,128,4)!

042

620 CALL HCHAR(17,18,128)!11
Continued on page 28

Page 28 » MICROpendium ¢ September/October 1998

CLAUSTROPHOBIA

Continued from page 27
0
630 CALL HCHAR(18,17,128,3)!
029
640 CALL HCHAR(19,19,128)!11
3
650 CALL HCHAR(20,17,128,3)!
022
660 CALL SOUND(500,784,0,196
,0)1087
670 CALL VCHAR(14,22,128,5)!
037
680 CALL SOUND(500,880,0,220
,0)1072
690 CALL HCHAR(17,26,128,3)!
028
700 CALL VCHAR(18,26,128,4)!
044
710 CALL VCHAR(18,28,128,4)!
046
720 CALL HCHAR(19,27,128)!11
2
730 CALL SOUND({500,988,0,247
,0)1090
740 CALL HCHAR(24,7,66)1009
750 CALL HCHAR(24,8,89)!015
760 CALL HCHAR({24,10,87) 1055
770 CALL HCHAR(24,11,46)!051
780 CALL SOUND(500,1047,0,26
2,0)!123
790 CALL HCHAR(24,13,86)!057
800 CALL HCHAR(24,14,65) 1055
810 CALL HCHAR(24,15,78)!1060
820 CALL HCHAR(24,17,83) 1058
830 CALL HCHAR(24,18,65) 1059
840 CALL HCHAR(24,19,78)!064
850 CALL HCHAR(24,20,84) 1053

860 CALL HCHAR(24,21,86
870 CALL HCHAR(24,22,76
880 CALL HCHAR (24,23,73) 1054
890 CALL HCHAR(24,24,69)!060
900 CALL HCHAR(24,25,84) 1058
910 FOR A=1 TO 1000 !195
920 NEXT A !215

930 CALL CLEAR !209

940 PRINT TAB(7) ; “CLAUSTROFO
BIA": :1197

1056
1056

" 21139

960 PRINT “TRY TO CAPTURE TH
E ENEMY BY ENCIRCLING HIM WI
TH BUFFERS.”: :!008

970 PRINT “YOU CAN PUSH ONE

OR MORE BUFFERS HORIZONTA
LLY OR VERTICALLY."”: :!0
95

980 PRINT “BUT WATCH OUT !!!
“: 11251

990 PRINT “THE GREEN BUFFERS
CAN'T BE MOVED AND THE ENE
MY CAN SUDDENLY CHANGE P
LACES.”: :1226

1000 PRINT “USE THE ARROW-KE
YS TO MOVE AND PRESS 'C’ WH
EN YOU HAVE CAPTURED THE ENE

MY (DO IT FAST) .”: :1251
1010 PRINT “PRESS ANY KEY TO
CONTINUE.” !145

1020 CALL KEY(0,K,S)!187
1030 IF S=0 THEN 1020 !006
1040 CALL CLEAR !209

1050 PRINT “TEN LEVELS ARE P
ROVIDED.”: :1090

1060 PRINT “THE HIGHER THE L

MICROpendium * September/October 1998 * Page 29

LAUSTROPHOBIA

EVEL:”: :1109
1070 PRINT “ A) THE MORE FI
XED BUFFERS.”: :1210
1080 PRINT * B) THE QUICKER
THE ENEMY CAN CHANGE
PLACES.”: :1253
1090 PRINT “THERE IS ALSO A
LEVEL FOR CHILDREN (LEVEL
0). HERE POINTS A AN
D B DON'T APPLY.”: : :1246
1100 PRINT ™ GOOD LUCK
Phivs 21080
1110 PRINT “PRESS ANY KEY TO
START.”: : : : :1064
1120 CALL KEY(0,K,S)!187
1130 IF S=0 THEN 1120 !107
1140 CALL CLEAR !209
1150 PRINT “LEVEL OF DIFFICU
LTY” 1182
1160 PRINT !156
1170 INPUT “(0-10)
“:DIF !196
1180 PRINT !156
1190 PRINT !156
1200 IF (DIF>10)+(DIF<0)THEN
1150 !099
1210 PRINT “NUMBER OF BUFFER
S:” 1090
1220 PRINT !156
1230 INPUT “(MAX.400)
“:QUA 1098
1240 IF (QUA>400)+ (QUA<4)THE
N 1180 1225
1250 CALL CLEAR !209
1260 HYPER=0 !063
1270 TIME=0 !230
1280 IF DIF=0 THEN 1310 !170

1290 TEST=(11-DIF)*10 !026

1300 GOTO 1320 !124

1310 TEST=1000 !139

1320 CALL CHAR(136, "FFFFFFFF

FFFFFFFF”) 1067

1330 CALL CHAR (137, "007E7ETE

7ETETE00") 1140

1340 CALL CHAR(144,799997E3C

3C7E9981") 1133

1350 CALL CHAR(145, "C3243C7F

TF3C24C3") 1129

1360 CALL CHAR (146, “81997E3C

3C7E9999") 1135

1370 CALL CHAR (147, "C3243CFE

FE3C24C3") 1159

1380 CALL CHAR (152, *3C7EFBFF

F8F0793E”) 1195

1390 CALL CHAR (96, "18187E7EL

8181818") 1037

1400 CALL COLOR(14,3,5)!229

1410 CALL COLOR(15,2,5) 1229

1420 CALL COLOR(16,12,5)!1024

1430 CALL CLEAR !209

1440 CALL HCHAR(1,2,136,30)!

221

1450 CALL VCHAR(2,2,136,22)!

237

1460 CALL VCHAR(2,31,136,22)

1032

1470 CALL HCHAR(24,2,136,30)

1019

1480 RANDOMIZE 1149

1490 IF DIF=0 THEN 1570 !175

1500 FOR A=1 TO 2*DIF !199

1510 X=INT(RND*22)+2 1214

1520 Y=INT(RND*24)+5 1220
Continued on page 30

Page 30 * MICROpendium *

Continued from page 29

1530 CALL GCHAR(X,Y,C)!150
1540 IF C=137 THEN 1510 1079
1550 CALL HCHAR(X,Y,137)!186
1560 NEXT A !215
1570 FOR A=l TO QUA 1029
1580 X=INT (RND*22)+2 1214
1590 Y=INT (RND*24) +5 1220
1600 CALL GCHAR(X,Y,C)!lSO
1610 IF C<>32 THEN 1580 !032
1620 CALL HCHAR(X,Y,lZB)!lBG
1630 NEXT A 1215

1640 RICH=4 !225

1650 MX=INT (RND*22) +2 1035
1660 MY=30 1145

1670 CALL HCHAR(MX,MY,lSZ)!O
81

1680 X=INT (RND*22) +2 1214
1690 Y=3 1019

1700 CALL HCHAR(X,Y,145)!185
1710 FOR A=1 TO 3 1050

1720 CALL SOUND(100,523,0)!1
28

1730 CALL SOUND(100,659,0)!1
38

1740 NEXT A 1215

1750 CALL SOUND(400,523,0) 11
31

1760 CALL KEY(O,KEY,STATUS)
234

1770 TIME=TIME+1 1215

1780 IF STATUS=0 THEN 2700 !
046

1790 IF KEY=69 THEN 1840 102
0

1800 IF KEY=68 THEN 2090 101
4

September/October 1998

1810 IF KEY=88 THEN 1860 104
1
1820 IF KEY=83 THEN 2070 124
7
1830 GOTO 2700 1229
1840 DIR=-1 1089
1850 GOTO 1870 1164
1860 DIR=1 !151
1870 CALL SOUND(30,500,0) 107
6
1880 TEL=0 !156
1890 CALL GCHAR (X+DIR,Y,A) !0
52
1900 IF A=32 THEN 1950 1208
1910 IF (A=l36)+(A:137)+(A=1
52)THEN 2030 1230
1920 X=X+DIR !014
1930 TEL=TEL+DIR 1040
1940 GOTO 1890 1184
1950 IF TEL=0 THEN 1980 1092
1960 IF A=136 THEN 2030 1086
1970 CALL HCHAR (X+DIR,Y,128)
1090
1980 X=X-TEL+DIR 1181
1990 CALL SOUND(50,-1,0) 1170
2000 CALL HCHAR (X-DIR,Y,32)!
036
2010 CALL HCHAR (X, Y, 145+DIR)
1089
2020 GOTO 2700 1229
2030 X=X-TEL !021
2040 IF A=152 THEN 2300 1099
2050 CALL SOUND(100,110,0)!1
20
2060 GOTO 2700 1229
2070 DIR=-1 1089
2080 GOTO 2100 !139

MICROpendium * September/October 1998 « Page 31

ICLAUSTROPHOBIA

2090 DIR=1 !151
2100 CALL SOUND({30,500,0)!07
6
2110 TEL=0 !156
2120 CALL GCHAR(X, Y+DIR,A)!0
52
2130 IF A=32 THEN 2180 !183
2140 IF (A=136)+(A=137)+(A=1
52) THEN 2260 !205
2150 Y=Y+DIR !016
2160 TEL=TEL+DIR !040
2170 GOTO 2120 !159
2180 IF TEL=0 THEN 2210 !067
2190 IF A=136 THEN 2030 !086
2200 CALL HCHAR(X, Y+DIR,128)
1090
2210 Y=Y-TEL+DIR !183
2220 CALL SOUND(50,-1,0)!170
2230 CALL HCHAR(X, Y-DIR,32)!
036
2240 CALL HCHAR(X,Y,146-DIR)
1091
2250 GOTO 2700 !229
2260 Y=Y-TEL !023
2270 IF A=152 THEN 2390 !190
2280 CALL SOUND(100,110,0)!1
20
2290 GOTO 2700 !229
2300 X=X+DIR !014
2310 IF TEL=0 THEN 2370 !228
2320 CALL SOUND(10,500,0) !07
4
2330 CALL SOUND(10,500,0)!07
4
2340 CALL HCHAR(X-DIR,Y,32}!
036
2350 CALL HCHAR(X,Y,145+DIR)

1089
2360 GOTO 2700 !229
2370 CALL HCHAR(X-DIR,Y,32)!
036
2380 GOTO 2480 !008
2390 Y=Y+DIR !016
2400 IF TEL=0 THEN 2460 !062
2410 CALL SOUND(10,500,0)!07
4
2420 CALL SOUND(10,500,0)!07
4
2430 CALL HCHAR(X,Y-DIR,32)!
036
2440 CALL HCHAR(X,Y,146-DIR)
1091
2450 GOTO 2700 !229
2460 CALL HCHAR(X,Y-DIR,32)!
036
2470 GOTO 2480 !'008
2480 CALL HCHAR(X,Y,96)!141
2490 DATA 500,262,375,262,12
5,262,500,262,375,311,125,29
4,250,294,250,262,250,262,25
0,233,500,262 !222
2500 RESTORE 2490 1032
2510 FOR A=1 TO 11 f098
2520 READ T !235
2530 READ F 1221
2540 CALL SOUND(T,F,0)!089
2550 NEXT A !215
2560 CALL CLEAR !209
2570 PRINT TAB(11);"YOU LOSE
* 1004
2580 FOR A=1 TO 12 !099
2590 PRINT !156
2600 NEXT A !215
Continued on page 32

Continued from page 31

2610 PRINT TAB(4);"PRESS ANY
KEY TO PLAY AGAIN” [207
2620 CALL KEY(0,K,S)!187
2630 IF S=0 THEN 2620 !077
2640 GOTO 1140 !199
2650 CALL KEY(0,K,S)!187
2660 IF K=67 THEN 2970 !226
2670 HYPER=HYPER+1 !137
2680 IF HYPER>TEST THEN 3210
1027
2690 RICH=INT(RND*4)+1 !114
2700 ON RICH GOTO 2710,2840,
2710,2840 !010
2710 ZIN=INT(RICH-1.5)!050
2720 CALL GCHAR (MX+ZIN,MY,CH
) 1042
2730 IF CH<>32 THEN 2790 !03
8
2740 CALL HCHAR (MX,MY,32)!02
9
2750 CALL SOUND(30,-7,0)1174
2760 MX=MX+ZIN !186
2770 CALL HCHAR (MX,MY,152) !0
81

2780 GOTO 1760 !053
2790 IF (CH<144)+(CH>147)THE
N 2650 !092
2800 CALL HCHAR (MX,MY,32)!102
9
2810 CALL HCHAR (MX+ZIN,MY, 15
2)1003

2820 CALL SOUND(1000,-7,0)!0
14
2830 GOTO 2500 1028
2840 ZIN=-(INT{RICH-2.5))!09

Page 32 - MICROpendium « September/October 1998

8

2850 CALL GCHAR (MX,MY+ZIN,CH
) 1042

2860 IF CH<>32 THEN 2920 !16
9

2870 CALL HCHAR (MX,MY,32) !02
9

2880 CALL SOUND(30,-7,0)!174
2890 MY=MY+ZIN !188

2900 CALL HCHAR(MX,MY,152) !0
81

2910 GOTO 1760 !053

2920 IF (CH<144)+(CH>147)THE
N 2650 [092

2930 CALL HCHAR(MX,MY,32)!02
9

2940 CALL HCHAR (MX,MY+ZIN, 15
2)1003

2950 CALL SOUND(1000,-7,0)!0
14

2960 GOTO 2500 !028

2970 CALL GCHAR(MX-1,MY,N)!2
47

2980 CALL GCHAR (MX,MY+1,E)!2
37

2990 CALL GCHAR(MX+1,MY,S)!2
51

3000 CALL GCHAR(MX,MY-1,W) !0
00

3010 IF (N=128)*(E=128)*(S=1
28)*(W=128)THEN 3070 !208
3020 N=0 1005

3030 E=0 !252

3040 s=0 !010

3050 w=0 !014

3060 GOTO 1760 1053

MICROpendium * September/October 1998 * Page 33

ICLAUSTROPHOBIA

3070 CALL HCHAR (MX,MY, 96) !03
9

3080 FOR F=1000 TO 110 STEP
-40 1205

3090 CALL SOUND(-200,F,0)!03
6

3100 NEXT F !220

3110 FOR A=1 TO 1000 !195

3120 NEXT A !215

3130 CALL CLEAR !209

3140 PRINT TAB(12);"YOU WIN”
1191

3150 PRINT !156

3160 PRINT TAB(11);*TIME =*;

TIME !033

3170 FOR A=1 TO 10 !097

3180 PRINT !156

3190 NEXT A !215

3200 GOTO 2610 !139

3210 CALL HCHAR (MX,MY,32) 102

9

3220 MX=INT(RND*22)+2 !035

3230 MY=INT(RND*30)+2 !035

3240 CALL GCHAR(MX-1,MY,N)!2

47

3250 CALL GCHAR (MX,MY-1,W) !0

00

3260 CALL GCHAR (MX,MY,CH) !'12

0

3270 CALL GCHAR (MX,MY+1,E)!2

37

3280 CALL GCHAR(MX+1,MY,S)!2

51

3290 IF (CH<>32)+((N<>32)*(E

<>32)*(S<>32) * (W<>32)) THEN 3

220 1099

3300 CALL HCHAR (MX,MY,152) !0
81

3310 FOR F=110 TO 1000 STEP
70 1014

3320 CALL SOUND(-100,F,0)!03
5

3330 NEXT F !220

3340 HYPER=0 !063

3350 GOTO 1760 !053

30000 SUB BXB :: CALL INIT :
: CALL LOAD(8194,37,194,63,2
40) 1126

30001 CALL LOAD(16368,80,79,
67,72,65,82,37,58,80,79,75,6
9,86,32,37,168) 1133

30002 JI\[1$=" % 00
$ $ %
P $
a q q F
% $]
| *p” 1024

30003 FOR J=1 TO 136 :: CALL
LOAD(9529+J,ASC (SEG$ (1 [\[1$
,J,1))):: NEXT J :: SUBEND !
051

30004 SUB CHAR(A,A$):: CALL
LOAD(9500,A) : : CALL LINK(*PO
CHAR”,A$):: SUBEND !169
30005 SUB COLOR(A,B,C):: CAL
L LOAD(9492,8,15+A, (B-1)*16+
c-1)1013

30006 CALL LINK(“POKEV”):: S
UBEND !127

Page 34 » MICROpendium + September/October 1998

EXTENDED BASIC

Figuring sales taxes
depends on percentages
and a little help from the Tl

BY LEONARD TAFFS

This “journal” column never
abandons the thought that there may
be people interested in the TI who are
not TI veterans immersed in SCSI
and AMS cards, using Geneves and
Rave keyboards, devoting reams to
how to patch TT’s to PCs, etc.... For
those who go “on-line,” just to read
the messages on The River T1 server
list to see....

Rather, it is the intent of this
column to strive to contribute to
what is perceived to be a growing
void of less complicated material for
the TI “newcomer.” If the Tl is a
dying species, its end will only be
hastened by the dominating elite
being oblivious to the possible needs
of newcomers, however unintentional
this might be.

Most of this column’s program
listings contributions are of programs
utilizing Extended BASIC (some of
which require memory expansion). I
would be glad to include more
materials in TI BASIC format if you
inform me of such need.

FINDING PERCENTAGE

Consider the situation where a
phone bill is shared with others —
each paying his fair proportion of the
total bill and proportion of the tax
and other charges. For phone bills
which do not tell the customer the

percentage rate of these extra charges,
this means using a calculator unless
you are gifted in math. If the calcula-
tor is not used very much there is
always the question as to how worn
its batteries may be and did the last
person to use it drop it — in which
case it may not be reliable. The TI can
come to the rescue.

Using command mode with the TI
you need to know what to divide by
what to calculate percentage. The
simple formula: TOTAL AMOUNT
OF TAXES AND OTHER CHARGES
divided by TOTAL OF PHONE CALL
charges will equal the TAX PER-
CENTAGE. If one has no problem
with remembering this formula, one
does not need a program. But some
people still do. There are many
calculator utilities which have a menu
option for calculating percentage but
if you don’t have such a utility,
FINDPERCNT, the Extended BASIC
program listing with this article may
be useful.

FINDPERCNT

1 REM [FINDPERCNT]} 4-19-97
By W.Leonard Taffs, SW99ers
1018
2 11131
3 ! call key commands:
1 CALCULATE TAX percent
2 CALCULATE TAX amount !

MICROpendium « September/October 1998 « Page 35

EXTENDED BASIC

210
4 ! 3 ADD-SUB adder
4 DISPLAY COMMAND KEYS !
123
5 ! 5 DEF DISPLAY ADD-SUB ME
MRY !033
6 ! 6 DISPLAY ARRAY
7 CLEAR SCREEN !236
7 ! B SEND ARRAY TO PRINTER
9 QUIT PROGRAM 1063
8 11131
100 DIM AR(10),AR$(10):: CAL
L CLEAR :: CALL BLUE :: DSP$
="1=% 2=TX 3=AS 4=K 5=M 6=A
7C8=P
9Q” :: OPEN #1:”PIO” !048
110 AR$(1)="AMT OF TAX” :: A
R$(2)="TOT TAXED” :: ARS (3)=
“TAX %" :: AR$(4)="CMP TAXAB
LE=" :: AR$(5)="CMP TAX RATE
* 1075
120 AR$(6)="COMP TAX=* :: AR
$(7)="ITEM 1" :: ARS(8)="ITE
M 2" :: ARS(9)="IT1 + IT2" !
204
130 DISPLAY AT(1,1) :DSP$
DISPLAY AT(3,4) : “TAX PERCENT
/AMT FINDER” :: GOTO 320 !06
2
140 DISPLAY AT(5,1):”ENTER T
AX AMT $” :: ACCEPT AT(5,17)
:TAX :: IF TAX=999 THEN GOSU
B 270 :: GOTO 140 ELSE AR(1)
=TAX 1199
150 DISPLAY AT(7,1) : "ENTER $
AMT “ :: ACCEPT AT(7,14):AM
T :: AR(2)=AMT !049
160 AR(3)=AR(1)/AR(2)!115

170 DISPLAY AT(9,1):"TAX” ;AR
(1);7/ AMT”;AR(2);"=": :*
[“;AR(3);"%]” :: MEM=AR(1)
/AR(2) 1154
180 GOTO 310 !134
190 DISPLAY AT(14,1) : "CALCUL
ATE TAX NOW:” :: DISPLAY AT(
16,1) : "ENTER § AMT: ™ :: ACC
EPT AT(16,15) :AMT :: IF AMT=
-99 THEN 230 ELSE IF AMT=999
99 THEN GOSUB 270 ELSE AR(4)
=AMT :: DISPLAY AT(1,1):DSP$
1045
200 DISPLAY AT(18,1):”ENTER
FOUND % “ :: ACCEPT AT(18,16
):FP :: AR{5)=FP !161
210 DISPLAY AT(20,1):"TAX IS
“;AMT*FP :: AR(6)=AMT*FP !
200
220 GOTO 310 !134
230 REM ** CALCULATE ** 1048
240 DISPLAY AT(22,1):"#1= »
:: ACCEPT AT(22,10):IT1 :: D
ISPLAY AT(23,1):"#2= * :: AC
CEPT AT(23,10):IT2 :: DISPLA
Y AT(24,1):"DIFF= “;IT1+IT2;
“ P.E.T.C." :: AR(7)=IT1 ::
AR(8)=IT2 :: AR(9)=IT1+IT2
250 CALL KEY(0,K,S):: IF S<1
THEN 250 :: DISPLAY AT(20,1
) :RPT$ (™ “,140):: GOTO 310 !
160
260 DISPLAY AT(20,1):RPT$ ("
*,140):: GOTO 190 '!'101
270 REM ** DISPLAY CALCS **
1062
280 DISPLAY AT(1,1):"IT1";AR

Continued on page 36

Page 36 » MICROpendium * September/October 1998

EXTENDED BASIC

Continued from page 35
(5);”ITZ“;AR(G):”DF";AR(7)!0
96
290 CALL KEY(0,K,8):: IF s<1

THEN 290 !105
300 RETURN !136
310 REM ** CALL KEY ** 1199
320 CALL KEY(0,K,S):: IF S<1
THEN 320 :: IF (K-48<1)+(K-
48>9)THEN 320 1227

330 ON K-48 GOTO 140,190,230
,340,350,430,420,360,480 114
3

340 DISPLAY AT(1,1):DSP$::
GOTO 320 !120

350 DISPLAY AT(1,1):”IT1";AR
(7);"TT2";AR(8);"DF";AR(9):R
PTS (* “,28):: GOTO 320 !074
360 FOR I=1 TO 9 !064

370 PRINT #1:TAB(10);ARS$(I);
“ “;AR(I)!150

380 IF I=3 THEN PRINT #1:TAB
(10) ; RPTS$ (“-",20)ELSE IF I=6
THEN PRINT #1:TAB(10);RPTS$ (
n-#,20)1086

390 NEXT I 1223

400 PRINT #1:TAB(10) ;RPTS ("=
v,20) 1194

410 GOTO 320 !144
420 CALL CLEAR ::
036

430 CALL CLEAR :: J=2 !086
440 FOR I=1 TO 9 !064

450 DISPLAY AT (I+J,1):AR$(I)
JAR(I):: J=J+1 :: IF I=2 THE
N DISPLAY AT {I+J+2,1):RPTS$ ("
=»,28)1016

455 IF I=4 THEN DISPLAY AT(I

GOTO 130 !

+J+4,1) :RPTS (" =",28) 1229
460 NEXT I 1223
465 DISPLAY AT{24,1):"Use"”
7" to Clear This Screen” !2
31
470 GOTO 320 !144
480 DISPLAY AT(22,1):”SURE Y
OU WANT TO QUIT? Y/N” :: ACC
EPT AT(22,28)SIZE(-1)VALIDAT
E(“NYny”):Y$ 1035
490 IF Y$<>"Y"” AND Y$<>"y" T
HEN DISPLAY AT(21,1):RPT$(*
%, 84):: GOTO 130 ELSE STOP !
098
500 REM [CALL/BLUE] !229
510 SUB BLUE !149
520 CALL SCREEN(5)!150
530 FOR L=0 TO 14 !'111
540 CALL COLCR(L,16,1)!051
550 NEXT L !226
560 SUBEND !168

The Extended BASIC program
listing above does this calculation for
you when you enter needed factors.
FINDPERCNT consists of three
sections:

1. A section to calculate the TAX
PERCENTAGE

2. A section to find TAX
AMOUNT for specified phone
charges you input

3. A mini add-subtractor section

All data you enter is stored in
arrays. This information is not
changed until you make new entries.
1 REM [FINUDERCNT] 4-19-97
By W.Leonard Taffs, SwW99ers
2!
3 | call key commands:

MICROpendi

Q

EXTENDED BASIC

1 CALCULATE TAX percent
2 CALCULATE TAX amount

3 AM-SUB adder
4 DISPLAY COMMAND KEYS

5 DISPLAY ADD-SUB MEMRY
The opening screen consists of a
three-line display at the top of your
screen:
1=% 2=TX 3=CA 4=D 5=M 6=A 7=C
8=P 9=Q
TAX PERCENT/AMT FINDER
Note that there is no blinking
cursor. This is because this program
uses CALL KEY action for all its
commands, of which there are nine.
Keys 1 through 3 are used to enter
amounts to be calculated. Keys 4
through 9 are user conveniences for
displays or sending results to your
printer.

The CALL KEY commands, in
abbreviated form,
appear in the first
two lines — this
constitutes the
“MENU” of this
program. The key-
presses and
functions are:

1. CALCULATE
TAX percent (%)

2. CALCULATE ITen
TAX amount (TX)

3. Mini ADD-
SUBTRACTOR Imt
(ca)

4. DISPLAY
COMMAND Call

ITEN

Screen 1

* September/October 1998 » Page 37

Keys (D) (top 2 lines)

5. DISPLAY mini ADD-SUB-
TRACTOR entries and product (M)
(top line of screen)

6. DISPLAY ARRAY (A) (show all
data entered)

7. CLEAR SCREEN (C)

8. PRINT ARRAY (P) (send all
data to PRINTER)

9. OUIT PROGRAM (Q)

To view this list on your screen,
use FCTN-4 to break out of the

program and:

1. ENTER: CALL CLEAR

2. ENTER: PRINT DSP$ (won’t
appear if you have not used FCTN-4
to BREAK)

3. ENTER: LIST 3-7

PRINTER

(8) Note: when you send your
entries to your printer it will print the
summary of any data resident in

arrays. This is the same information
Continued on page 38

FMT OF TR

EXTENDED BASIC

Continued from page 37
that is displayed to your screen if you
you press “6” When using “8,” the)
printer must be on online. If it isnl t,.
the program cannot continue until it
is. The summary will appear as
shown in Screen 1.

This display summary summarizes
whatever your last entries were and
computer calculations prior to your
pressing “6” or “8.” (In this example
the Add-Sub was not used). With “8,”
the full summary will be printed
regardless if any entries have been
made. The above figures are for:

AMT OF TAX what you entered
for phone company bill tax total

TOT TAXED what you entered as
bill total without tax

TAX percentage calculated using
these 2 figures.

Below the double line appear your
entries for “CALCULATE TAX NOW
(AMT)” and “ENTER FOUND %”
with calculated tax
amount result.

The last three
summary items
show the two Add-
Subtract entries
made along with
their product.

Screen 2 shows
your screen display
when entries have

TH

Page 38 » MICROpendium * Septcmber/October 1998

program from a cold start:

Press “1” for the first prompt:

ENTER TAX AMT $§

Enter the total of taxes/excise
charges, etc., from your bill and press
Enter. Now appears;

ENTER $ AMT

Enter the phone bill total (without
taxes) and press Enter. The screen
displays the figures you just enterefi
and shows the tax percentage rate in
brackets and the program waits for
your next keypress.

Press “2.” You will see:

CALCULATE TAX NOW:

ENTER $ AMT:

Enter whatever amount you wish
to figure tax for and press Enter. Next
appears:

ENTER FOUND %

Here you enter either the rate
displayed in brackets in step 1 (be
sure to use a decimal point), or any
other rate if desired. Press Enter again

CALCULATE THX

AMT

b de using ENTER ¥
made
,hE: e input ENTER FOUND
sections of the 1
program:

Stepping

through the Screen 2

MICROpendium * September/October 1998 « Page 39

EXTENDED BASIC

and the screen displays:

TAX IS: (shows tax amount).

Press “3” (to use the mini Add-
Subtractor) and you will see the
prompt “#1="near the bottom left of
the screen. This allows the first of two
figure entry inputs. Entering a
number and pressing Enter brings the
second prompt “#2=". Enter your
second figure (using a minus sign if
you wish to subtract) and press Enter
and the sum appears as:

DIFF= (sum) PETC.

“PE.T.C” means Press Enter To
Continue. Pressing Enter (to contin-
ue) will erase display of your Add-
Subtract figures. They are retained in
memory until you use the Add-
Subtractor again. At any time you

wish to see these Add-Subtractor
figures, press “5” and your figures will
be shown at the top line of your
screen as “IT1,”“IT2,” and “DE” You
can toggle between the “4” and “5”
keys to switch between top-screen
displays.

The remaining keypress options
are:

Pressing “6” will clear the screen
and display all information stored in
the program array.

Pressing “7” will clear the screen at
any time (variables are not cleared
from the array) and return you to
your opening screen.

Pressing “8” will send data stored
in your array to your printer.

Pressing “9” will end your pro-
gram but not without a chance for
you to get back in at “SURE YOU
WANT TO QUIT? Y/N” prompt.

Being able to clear your screen
with “7” is convenient when your
screen gets messed up, which will
happen if you enter zero for both
inputs of step 1. (You would get
numeric overflow error warnings —
if you do, just press “7.”) Another case
where your screen will get messed up
is if you accidentally press a comma,
instead of period for a decimal point,
or attempt to use multiplication or
division in the Add-Subtract portion,
in which case you get a String-
Number Mismatch Warning — again,
press “7” when the figure has been
correctly entered.

When you clear the screen by
using “7,” the previous entries will no
longer appear. However, you do not
have to re-enter these if they were
correct. Simply press “6” and your
figures will appear in the array listing.

The CALL KEY action of this
program facilitates your toggling
between any keypress selection.
Options 1 through 3 require complet-
ing entries before you can toggle
other keypresses. The blinking cursor
tells you an entry is needed. When
the cursor is not blinking you are at
the CALL KEY choice. You can repeat
any keypress as often as you wish.

CALL KEY WHar?

Here’s something for those curious
about the TI CALL KEY subprogram.
According to my Extended BASIC
manual, it implies the only useful
values in the CALL KEY “unit”
(besides 0) are 1 and 2, stating that 3,
4,and 5 are “reserved for future use.”

Continued on page 40

Continued from page 39
Even though the manual implies the
units 3, 4, and 5 were for “future” use,
I wrote the following program with 6
choices, being the calls for 0 through
5. For reference, the manual says that
use of 0 allows use of the full key-
board, 1 allows use of left side of
keyboard, and 2 allows use of the
right.

The following program allows you
to first enter any number between 1
and 6. Entering one of these numbers
and pressing Enter will display a line
on the screen. A CALL KEY action
has been initiated by this entry. Now
there is no blinking cursor as the
program waits for you to press
another key. When a key is pressed
you are returned to the choose input
line again.

After selecting a Call Key number
the program is programmed to
respond, either positively or negative-
ly to your entry of the uppercase letter
“A” A positive response is indicated in
the line directly below the CALL KEY
line and a negative response is
indicated one line further down.

Page 40 - MICROpendium * September/October 1998

CALKEY

1 REM [CALKEY:0-5] 4-21-97
By W.Leonard Taffs, SW99ers
1195

2 11131

3 ! Use “C” to clear screen

! Use “Q” to Quit [138
4 11131
5 ' CALL KEY (0-5) STUDY....
How Do Different Values

of First Call Parameter
affect CALL KEY results?

1189

6 11131

7 | ENTER UPPERCASE “A"
AFTER CHOOSING AND ENTER
ING A NUMBER BETWEEN 1
AND 6, THEN TRY OTHER
LETTERS INSTEAD OF “A” !

248

8 11131

100 CALL CLEAR !209

110 C1$="C.K.(0,K,S) ™ :: C2

$="C.K.(1,K,S) “ :: C3$="C.K

{2,K,8) * :: C45="C.K.(4,K,

S) * :: C6%="C.K.(5,K,8) " !

113

120 J=0 :: DISPLAY AT(1,1):"

CALL KEY CHOOSE: (1-6) “;CHR

$(K) 1099

130 ACCEPT AT(1,24)VALIDATE (

%1234567CcQq”) :K$:: IF K$="

» THEN 130 ELSE DISPLAY AT(1

,24):K$:: DISPLAY AT(24,1):

“Last “;K$:: K=ASC(K$):: IF

(K$="Q")+(K$="q") THEN STOP

1023

140 IF (K-48=19)+(K-48=51)TH

EN GOSUB 360 :: GOTO 120 ELS

E IF (K-48<1)+(K-48)>6 THEN

130 1208

150 ! ON ERROR 130 :: ON K-4

8 GOTO 170,200,230,260,290,3

20 1207

160 ON K-48 GOTO 170,200,230

,260,290,320 ! Test line !10

1

170 DISPLAY AT(4,1) :CHR$(95)

MICROpendium * September/October 1998 Page 41

EXTENDED BASIC

7C1$;K$:: CALL KEY(0,K,S)::
DISPLAY AT(1,23):K :: IF S<
1 THEN 170 :: C1=C1l+1 !250
180 IF K=65 THEN DISPLAY AT
5,2):%1 “"A"" K=";K;" X=";C1l
:RPTS (™ “,28):: GOTO 350 115
5
190 IF K<>65 THEN DISPLAY AT
(5,1) :RPT$ (" »,28):" “;K$;*"
REFUSED (0)";Cl :: GOTO 350
1029
200 DISPLAY AT(7,1) :CHR$(95)
;C2$;K$:RPTS(" “,56):: CALL
KEY(1,K,S):: DISPLAY AT(1,23
):K :: IF S<1 THEN 200 :: C2
=C2+1 1242
210 IF K=65 THEN DISPLAY AT(
8,2):%2 “"A"" K=";K;" x=";C2
:RPT$ (™ *,28):: GOTO 350 !'16
0
220 IF K<>65 THEN DISPLAY AT
(8,1) :RPTS$ (™ =, 28):7*~;K$;~
REFUSED (1)”7;C2 :: GOTO 350
1044
230 DISPLAY AT(10,1) :CHR$ (95
) ;C3$;K$:RPTS (" *,56):: CALL
KEY(2,K,S):: DISPLAY AT(1,2
3):K :: IF S<1 THEN 230 :: C
3=C3+1 1063
240 IF K=65 THEN DISPLAY AT(
11,2):73 w»pn~ K=";K;"” x=";C
3:RPT$ (" *,28):: GOTO 350 !2
05
250 IF K<>65 THEN DISPLAY AT
(11,1) :RPTS (™ “,28) "M RS
REFUSED (2)”;C3 :: GOTO 350
1089
260 DISPLAY AT(13,1) :CHRS (95

);C4$;K$:: CALL KEY(3,K,S):
: DISPLAY AT(1,23):K :: IF S
<1 THEN 260 :: C4=C4+1 1146
270 IF K=65 THEN DISPLAY AT(
14,2):74 “*A%~ R=";K; " x=";C
4:RPT$ ("™ *,28):: GOTO 350 !2
10
280 IF K<>65 THEN DISPLAY AT
(14,1) :RPT$ (" ",28) :* “;K$;”
REFUSED (3)”;C4 :: GOTO 350
1084
290 DISPLAY AT(16,1) :CHR$ (95
) iC5$;K$:: CALL KEY(4,K,S):
: DISPLAY AT(1,23):K :: IF S
<1 THEN 290 :: C5=C5+1 1183
300 IF K=65 THEN DISPLAY AT(
17,2):75 “"A"~ K=";K;" x=";C
5:RPT$(" *,28):: GOTO 350 !2
15
310 IF K<>65 THEN DISPLAY AT
(17,1) :RPT$ (™ ~,28):" “;K$; "
REFUSED (4)”";:;C5 :: GOTO 350
1089
320 DISPLAY AT(19,1) :CHR$ (95
};C6$;K$:: CALL KEY(5,K,8S):
: DISPLAY AT(1,23):K :: IF S
<1 THEN 320 :: C6=C6+1 1220
330 IF K=65 THEN DISPLAY AT(
20,2):76 “"A"” K=";K;” x=";C
6:RPT$ (" “,28):: GOTO 350 !2
11
340 IF K<>65 THEN DISPLAY AT
(20,1) :RPT$ (" *,28):” “;K$; "
REFUSED (5)";C6 :: GOTO 350
1085
350 DISPLAY AT (24,12) : "K$=";
CHR$(K) ;" K=";K; "CHR$="; CHR$
Continued on page 42

Page 42 » MICROpendium * September/October 1998

EXTENDED BASIC

Continued from page 41
(K):: K$="" :: K=0 :: GOTO 1
20 1228
360 REM ** CLEAR SCREEN ** !
233
370 DISPLAY AT(1,1):"C L EA

RING SCREERN" 1003

380 FOR I=2 TO 24 :: DISPLAY
AT(I,1):RPT$(" *,28);CHR$(3

0):: NEXT I :: RETURN !071

390 REM ** END OF PROGRAM **
1102

FILE COMPRESSION "

Using PFC, Archiver,
and ARCHIE
to increase disk space

BY JEFF WHITE

The following article has appeared
in several venues, including user group
newsletters and online services.—Ed.

I have found two programs to be
very useful to me while restoring my
hard disk to reduce wear and tear.
These are Program File Compressor
by Koen Holtman, and ARCHIE by
Jim Reiss.

I proceeded to use PFC on Disk
Utilities by John Birdwell, Archiver 11T
by Barry Boone, and ARCHIE All
went fine until I ran the compressed
ARCHIE file which I had named
ARCIRE-PEC. The ARCHIE title
screen was glitched at the bottom,
with garbage characters following:

* Press any key to proc

1 checked the original ARCHIE
file, and sure enough it runs fine. The

missing characters were “eed *”. That
is five missing characters, so 1 had a
pretty good idea what had gone
wrong. So I loaded Disk Utilities and

started looking at ARCHIE with the
sector editor.

What I found was “eed */” in the
Tast six bytes of the file. Thus, PFC
was somehow not finding those bytes.
Looking at the six-byte loader header
in the first sector of ARCHIE I found
the value >OC08 (3080) in the
second word, which is the actual
length of the program, and the
proper value to store there. At the
17th byte (byte 0 is the first byte, so [
am talking about byte >10 or 16) in
the ARCHIE file descriptor record I
found the value >OE, which is the
number of bytes used in the last
sector of the file.

Then I started looking at Archiver
111 V3.03 which I had patched with
the correction implemented in
version 3.03g. At the 17th byte in its
FDR was the value >B2, and in the
second word of the six-byte loader
header was the value >1FB2. Going to
the last sector of the file, the abso-

MICROpendium * September/October 1998 * Page 43

FILE COMPRESSION

lutely correct values should be >62
and >1F5C, since only >62 (98 bytes)
are used in that last sector. But that
does not really matter.

I checked the Disk Utilities files,
and sure enough the values at the
second word in the six-byte loader
headers were six higher than they
needed to be to properly load. For
DSKU1 and DSKU?2, the value was
>2000, and each of the values in
their respective FDR’s at the 17th
byte was >00 (signifying all 256, or
>100, bytes were used in the last
sector of the files). The values
should have been >1FFA and >00,
but this time it was fortunate they
weren't. For the DSKUS3 file, the
value in the FDR was >F2, and the
value in the six-byte loader header
was >1BF2. If you are following
closely, you will realize that the
value in the six-byte loader header

header to >2000.

Anyway, what started this was the
glitch PFC had compressing ARCH-
IE. The value in its six-byte header
that needed changing was >OC08. So
1 changed the value to >OCOE, and
ran PFC on ARCHIE. This time when

need only be >1BEC.

I recommend that
ARCHIE executables not
be archived with docs,
as an archive of the
separate program
Image files, support files
(such as CHARA1), and
doc files will normally
be smaller.

However, for PFC to work
properly, the second byte in the
second word of the six-byte loader
header in the first sector of each
program image file must be equal to
the 17th byte (byte >10 or 16) in the
FDR of that file. If that byte is >00,
the first byte in the second word of
the six-byte loader header must be
incremented by 1. In other words, if
the DSKUT1 file had as its six-byte
loader header 0000 1FFA AOOO,
before using PFC on it you would
look at the FDR for DSKUI, find that
byte >10 has the value >00, and
change the value >1FFA in the loader

I ran the compressed version of
ARCHIE, the title screen looked
right.

Program File Compressor has the
bug, in my opinion. But now you
know how to work around it. Had the
last few bytes of ARCHIE been
program code rather than title screen
data, unpredictable results might
have occurred while running ARCH-
IE.

Now for the rest of the story.
Program image files such as PFC1
and PFC2 can be packed with

Continued on page 44

Continued from page 43
Archiver 111 as described in the
ARCHIE docs, and then you can run
them with ARCHIE. I created an
uncompressed archive of PEC1 and
PFC2, called it PFC, and saved disk
space and a filename in the directory.
I used PFC to change DSKU1 to
DSKU2 into DSKUT to DSKUV, then
packed the latter three files into
DSKU, and now I can run DSKU
with ARCHIE.

Of course, single files such as
ARCHIE and Archiver I need not be
packed, but compressing them with
PFC works fine. ARCHIE compressed
to 89 percent of its original size,
Archiver to 79 percent, and Disk
Utilities to 77 percent.

You may be wondering if you
should compress your program files
with PFC and follow that by ar-
chiving them with docs with Archiver
I11. I recommend that you check both
ways. To support my position,
consider the case of ARCHIE. The file
I downloaded was 19 sectors archived
with ARCHIE and ARCHIE/DOC. I
used PFC to make an executable
compressed file named ARCFUE-
PFC, and when archived with the
ARCHIE/DOC file I had a 22-sector
file.

Then I created a non-executable
file with PFC called ARCHIE-HELP,
and archived it with ARCHIE/DOC
and got a 20-sector file. Obviously,
for file transfers it pays to have the
smallest possible file size. But that
was only one case. I then used

Page 44 - MICROpendium * September/October 1998

FILE COMPRESSION

Archiver III to archive itself, and it
created a 27-sector file that is not
runnable until it is unarc’'d — a
catch-22. However, the version of
Archiver ITI compressed with PFC
that I named ARC-PFC was 26
sectors. That is a reasonable way to
distribute Archiver IIL.

I recommend that ARCHIE
executables not be archived with
docs, as an archive of the separate
program image files, support files
(such as CHARA1), and doc files will
normally be smaller. Nevertheless, it
is possible to get a small archive of
ARCHIE executables by using
Archiver I twice. Case in point: a
compressed archive of DSKU/REE,
DSKU1, DSKU2, and DSKU3 was 94
sectors. I compressed DSKU1
through DSKU3 into DSKUT
through DSKUYV, then packed them
into an ARCHIE-runnable file called
DSKU. I compressed DSKU/REF with
Archiver I11, then packed it with
DSKU, getting a file of 93 sectors.

That is a savings of only 1 sector,
but a big savings in time. Unpacking
the DSKU file is a much quicker
process than decompressing and
unpacking the DSKU1 through
DSKUS3 files. With ARCHIE, DSKU is
runnable. By the way, the packed
DSKU file of PFC- compressed files is
only 74 sectors, while a compressed
archive of DSKU1 through DSKU3 is
76 sectors. The DSKU/REF file
compressed to 19 sectors with
Archiver III (wonder what Clint
Pulley’s Text compressor would do).

MICROpendium * September/October 1998

EXTENDED BASIC

* Page 45

UNMERGE lets users move,
renumber program segments

UNMERGE, by
Ed Neu, does
exactly what it’s
name proclaims —
it extracts (UN-
MERGES) program
segments from
programs on disk
and saves them to a
second disk file. It
can be used to
renumber sections
of a program or to
move subroutines
from one program
to another. UN-
MERGE is written in Extended
BASIC and requires an expansion
memory and disk system.

To use UNMERGE, save the
master program in MERGE format
(DSKx.FILENAME,MERGE). The
program then is used to save the
desired lines in a second file in
MERGE format.

Files are automatically checked to
make certain the master file exists. If
the copy file already exists, a warning
is given and the user is given the
choice to use the name or not. The
program allows the user to extract as
many program segments as desired.

UNMERGE

100 REM————*

I I

1182
110 '1131
120 ! by Ed Neu
1015
130 ! 7/9/83
1188
140 ! XB.DD
1243
150 !!131
160 !1!131
170 CALL CLEAR !209
180 CALL SOUND(100,880,2) 113
6
190 CALL SOUND(100,880,2) 113
6

Continued on page 46

Page 46 - MICROpendium September/October 9 ‘

Continued from page 45
200 CALL SOUND(100,880,2)!13

6

210 PRINT “A TI99/4A PROGRAM
IN:”: : ¢ ¢ ¢ o:o:o:o:o:o:ll
24

220 PRINT " EXTENDED B

ASIC”: : : : :!180

230 PRINT ® by” :

i Ed Neu”:

11009
240 FOR T=1 TO 750 !176
250 NEXT T !234
260 CALL CLEAR !209

270 !

1097

280 ! MAINLINE PROGRAM !040
290 '1131

300 DEF LNO(L$)=ASC(SEGS$ (LS,

1,1))*256+ASC(SEGS(L$,2,1))!

170

310 DISPLAY AT(12,3)BEEP ERA

SE ALL:"Want instructions? (

Y/N)" 1173

320 CALL KEY(3,K,S):: IF S8=0
OR (K<>78 AND K<>89)THEN 320
1114

330 IF K=89 THEN GOSUB 1120
1044

340 DISPLAY AT(1,6)ERASE ALL
BEEP:” -** UNMERGE **-7 111
7

350 DISPLAY AT(5,1):USING "M

ASTER FILE? DSK###########H"
(FSS 1146

360 '\—m

1097

370 ! INPUT AND CHECK

SOURCE FILE !085

380 !!131
390 ACCEPT AT(5,17)BEEP SIZE
(-12) :FS$!139
400 ON ERROR 430 !184
410 OPEN #1:“DSK”&FS$,DISPLA
Y ,INPUT ,VARIABLE 163 !017
420 GOTO 560 !129

430 DISPLAY AT(7,1)BEEP:"MER
GED MASTER FILE:” !067

440 DISPLAY AT (8, (26-LEN(FS$
))/2) :"#"DSK"&FSS&” """ 1109
450 DISPLAY AT(9,8):”"NOT AVA
ILABLE” !208

460 DISPLAY AT(15,3):"press
any key to re-enter” !182
470 CALL KEY(3,K,S):: IF S=0

THEN 470 !'030

480 DISPLAY AT(7,1):”" 1040
490 DISPLAY AT(8,1):”” 1041
500 DISPLAY AT(9,1):"" 1042
510 DISPLAY AT(15,1):"" 1088
520 GOTO 390 !214

530 !

1097

540 ! INPUT AND CHECK

TARGET FILE (075

550 !1131

560 DISPLAY AT(8,1)BEEP:” C
OPY FILE? DSK” 1035

570 ACCEPT AT(8,17)SIZE(-12)
(FTS 1161

580 OPEN #2:“DSK”&SEGS (FT$, 1
,2), INTERNAL, INPUT ,RELATIVE

1162

590 INPUT #2:A$,I,I,I 1152
600 INPUT #2:AS$,I,I,I !152
610 IF AS$="" THEN 700 !165

620 IF A$=SEG$ (FT$,3,12) THEN
630 ELSE 600 1206

630 CLOSE #2 1152

640 DISPLAY AT (10,1)BEEP:”"
COPY FILE “"DSK"&FT$&”"”" 10
72

650 DISPLAY AT (11,6) : “ALREAD
Y EXISTS!" 1139

660 DISPLAY AT(13,1):"USE IT
? (Y/N)" 1147

670 ACCEPT AT(13,15)VALIDATE
(“YN”)SIZE(1) :USE$!005

680 FOR I=10 TO 13 :: DISPLA
Y AT(I,1):"” :: NEXT I 1241
690 IF USE$="Y” THEN 710 ELS
E 570 !059

700 CLOSE #2 !152

710 OPEN #2:“DSK"&FT$, DISPLA
Y ,OUTPUT, VARIABLE 163 1120
720 !

1097

730 ! INPUT LINE NUMBER

RANGE TO UNMERGE !039

740 11131

750 DISPLAY AT(11,1)BEEP: "FI
RST LINE NO. TO UNMERGE?” !0
76

760 ACCEPT AT (13,13)VALIDATE
(DIGIT)SIZE(5):L1 !236

770 DISPLAY AT(15,1)BEEP: "LA
ST LINE NO. TO UNMERGE?“ 125
1
780 ACCEPT AT(17,13)VALIDATE
(DIGIT)SIZE(5):L2 1241
790 !

1097
800 ! READ SOURCE FILE & !0S
4

MICROpendium September/October 1998 « Page 47

EXTENDED BASIC

810 ! WRITE TO TARGET FILE !
024
820 ! IF WITHIN UNMERGE !088
830 ! RANGE !016
840 !1131
850 DISPLAY AT(20,7):7"—> UM
ERGING <—" 1054
860 NREC=NREC+1 !201
870 LINPUT #1:T$ 1206
880 CHK=LNO(T$)!098
890 IF CHK<L1 THEN 870 !120
900 IF CHK>L2 THEN 940 1192
910 PRINT #2:T$ 1193
920 IF EOF(1)<>0 THEN 940 !0
85
930 GOTO 860 1174
940 PRINT #2:CHR$ (255) &CHRS (
255) 1085
950 DISPLAY AT (20, 4) BEEP:USI
NG “#### RECORDS UNMERGED” :N
REC-1 !021
960 FOR TD=1 TO 100 :: NEXT
TD !153
970 CLOSE #2 !152
980 !
1097
990 ! REPEAT UNMERGE !151
1000 !!131
1010 DISPLAY AT(22,1)BEEP:"U
NMERGE MORE LINES? (Y/N)” 12
28
1020 ACCEPT AT(22,28)VALIDAT
E{(“YN"):GO$!096
1030 IF GO$=“N”" THEN CLOSE #
1 :: END 1102
1040 RESTORE #1 1139
1050 NREC=0 !223

Continued on page 48

Page 48 « MICROpendium * September/October 1998

EXTENDED BASIC

Continued from page 47

1060 FOR I=9 TO 22 :: DISPLA
Y AT(I,1):”" :: NEXT I !200
1070 GOTO 570 !139

1080 END !139

1090 !

1097

1100 ! PRINTS INSTRUCTIONS !
088

1110 1131

1120 DISPLAY AT(1,8)BEEP ERA
SE ALL:”** UNMERGE **” 1250
1130 DISPLAY AT(3,1):"This p
rogram allows you to extrac
t portions of a progra
m stored on disk and save t
he extracted portion” !198
1140 DISPLAY AT(7,1):”on ano
ther disk file. It isgood £
or using subroutines in oth
er programs or for renumb
ering sections of a” 1214
1150 DISPLAY AT(11,1) : “progr
am.” 1130

1160 DISPLAY AT(13,1):"First
, the “"master”” program mus
t be saved using the M
ERGE”” option. The d
esired lines are saved in” !
068

1170 DISPLAY AT(17,1):"a secC
ond “"copy”” file in mer
ged format.” 1066

1180 DISPLAY AT(24,2):"press
any key to continue” !248
1190 CALL KEY(0,K,S):: IF S=
0 THEN 1190 !238

1200 CALL CLEAR !209

1210 DISPLAY AT(1,1):"Files
are automatically checke
d to make certain the master
file exists. If the copy £
ile already exists a” !139
1220 DISPLAY AT(5,1):“warnin
and th
choice

g message is given
e user is given the
to use it or not.” 1007
1230 DISPLAY AT(9,1):"The pr
ogram allows the user to exr
act as many program sectio
ns as he/she desires with a
prompt at the end of each”
1013
1240 DISPLAY AT(13,1):"each
“"UNMERGING””.” 1054
1250 DISPLAY AT(24,4):"press
any key to begin” 1151
1260 CALL KEY(0,K,S):: IF S=
0 THEN 1260 !052
1270 RETURN [136

MDOS 6

BY GAMBIT
The following article originally
appeared in The Computer Voice, the

MDOS 6.0 ready for Y2K

newsletter of the Southern California
Computer Group.—Ed.
It’s here... M-DOS 6.0 has arrived!

MICROpendi

MDOS 6.0

I'am particularly excited about this
version, since it has some important
changes in it.

Unless you have been hiding
under a rock, you’ve probably heard
of the problems that we are about to
face regarding the year 2000. Many
computers are not equipped to
handle the year 2000. This has caused
great concern regarding the stock
market, bank accounts, phone
service, or whether the power will be
on when we wake up on Jan. 1, 2000.

I started a discussion on the TI
listserver about this Y2K problem and
how it affected us Geneve users. We
are a little more fortunate, as the
clock chip in the Geneve uses only
two digits for the year, leaving the rest
of it up to M-DOS. Tim Tesch has
made the necessary changes to M-
DOS, so the year 2000 and beyond
(until 2086) will show the correct
date. I doubt any of us will be around

past 2087, so I am not concerned
about the date being correct 100 years
after the Geneve was made. If I am
around then and the date is wrong,
I'll be sure to raise a ruckus!

A few years ago, Tim wrote a
program called, “IBMGRAPH.” This
made the IBM character set (charac-
ters 128-255) available to M-DOS, so
you could use it with programs that
would display them, including the
“type” command in DOS. Now that
character set is part of M-DOS 6.0,
and can be initialized by the IBMGRF
[on/off] command.

This works rather nicely, except for
one program, Directory Manager, by

> September/October 1998 » Page 49

Clint Pulley. As Tim explains it, Clint
defines his character set before
having M-DOS define the remaining
characters. As it is, you get a bunch of
strange-looking characters, instead of
the nice lines that were defined by
Clint. Since FED and a large number
of other programs don’t have a
problem with the IBMGRF com-
mand, the problem definitely is with
DM. Perhaps we can get Clint to do
an update, or release the source code,
so another ambitious programmer
can make the corrections to DM.

There are a number of other
commands that have been added or
removed. The “VIDEO” command
has returned. This is invoked differ-
ently than before. Now you type
VIDEQO [fast/slow]. If you type
VIDEO FAST, the wait-states are
turned off, making screen displays
faster. VIDEO SLOW will return the
wait-state to its default setting,

This command is not compatible
with all programs, in which case you
should make sure VIDEO is slow. If
you used to use the VIDEO ON
command in the earlier versions of
M-DOS with some of your programs,
and you now have the Turbo-Video
chip installed on your 9640, the two
may not work together. At most, you
might have strange display results
with the two combined. With the
“TV” chip on the 9640, you shouldn’t
have a need for the VIDEO com-
mand, but it is there again.

A new SCSI mapping command
has been added SCSMAP [nn], which
Continued on page 50

Page 50 « MICROpendium ° September/Ocober 19

DOS 6.0

Continued from page 49
should help those having problems
with SCSI devices not responding to
ID 0, 1, or 2. This command will
make more sense to those of you
already using a SCSI card.

The MIRROR command has been
removed. It has been replaced by an
external command (program) called
“SAVEIMAGE” This is compatible
with all hard drives, including those
(MFM) formatted at 34 sectors per
track with CFORM. The image is

saved to a file on a floppy, or a
directory on another hard drive. (If
sector zero has been corrupted on
your C: drive, it won’t do much good
to store the image of it on the same
drive, which is now inaccessible.)

The TI [on/off] command has also
been removed. I have never used this,
but I do know it has something to do
with the way you access hard drives,
whether as WDS or HDS.

T've run out of room, so I'll close
for now.

Download File Converter
and Notepad80

By CHARLES GOOD

DOWNLOAD FILE
CONVERTER
by Bruce Harrison

When you download text files or
the source code of Web pages from
the Internet to a 99/4A the text files
often end up as a file in DF128
format. The same thing occurs if you
download text from a BBS. Almost all
TI word processors (“PRESS” is the
exception) cannot handle this file
format and require their text to be in
DV380 or sometimes DF80. Bruce
Harrison has written a pair of public
domain assembly language programs
that convert DF128 text to DV80 text
and vice versa.

These programs are easy to use.

Just enter the path of the input file
and the path of the output file. Long
path names will work so those with
SCSI or HFDC hard drives will have
no problems. The DV80 output is
nicely formatted with word wrap. You
see the conversion on screen as it
progresses.

In addition to Harrison’s software,
two other older software products
accomplish DF128-to-DV80 conver-
sion and one well-known product
does DV80-to-DF128. Richard
Phillips’ CONVERTIT v1.1 will do
DF128-to-DV80 conversion. It is
written in Extended BASIC and is
thus very slow. It was written specifi-
cally to convert text downloaded
from a Macintosh computer and is
supposed to recognize special symbol
codes on the Mac and translate them

MICROpendium * September/October 1998 « Page 51

properly on a TI. These symbols
include copyright, trade mark, pound
sterling, and all the common mathe-
matics symbols. I haven’t tried
CONVERTIT with Mactext but I
have tried it with “regular” DF128
text. It works, but very slowly.

Ben Yates wrote PRINT128 in the

“c” language. This does essentially the
same DF128-to-DV80 job as Harri-
son’s software, and like the Harrison
product PRINT128 is hard drive and
Geneve compatible and does word
wrap. An unusual aspect of
PRINT128 is that it will do DF128-
to-anything, such as DF24 or DV30. 1
don’t know why anyone would want
to do this with text, but the ability is
there.

Another thing I don’t know why
anyone would want to do is create
DF128 text from DV80 on the TI.
Harrison’s software will do this and
so will the Funnelweb word proces-
sor. Using either the 40- or 80-
column versions of the Funnelweb
editor you can use PF (print file) to
save a disk file in DF128 format
compatible with UNIX or MS/DOS,
your choice. For example, in the
Funnelweb editor after typing PF and
<enter> type M, a space and a path
name to save the text in the edit
buffer as a DF128 file in DOS format
with cr and If at the end of each line
and AZ at the end of the text.

Send me $1 and I will send you all
the software described above on a TI
DSSD disk. Or e-mail me and I will
e-mail you the software as an
attached file in PC99 format. This

software includes Bruce Harrison’s
new Download File Converter as well
as the older Convertit, and Print128.

NOTEPADS80
by Walid Maalouli

This is 80-column word process-
ing on the cheap! If you can find an
old 80-column terminal then this
software lets you do 80-column word
processing without an 80-column
card. You hook the 80-column
terminal to the RS-232 port of your
TI, and it acts as a second monitor for
80-column work,

Yes, you do need two video
displays for this software, your
normal TI monitor and the 80-
column terminal. The software is
written in Extended BASIC and is
thus kinda slow. It is, however, one of
the most full-featured Extended
BASIC word processors I have seen.
You start out on your TI monitor
selecting RS-232 port, size of left/
right and top/bottom margins,
double or single space, paragraph
indentation and the number of text

lines per page. There is also, on the TI
monitor, an indicator that tells you
which page of your document is
being displayed on the terminal. You
get a 24-line 80-column display,
about 1/3 of a 60-line document
“page.”

When typing a new document
keyboard response is somewhat slow,
but adequate for most people. Newly
entered text is word wrapped.

Continued on page 52

Page 52 » MICROpendium *

Continued from page 51
Documents are saved to disk as DV80
files. While typing or editing existing
text the following operations are
possible: line and character delete,
blank line and new character inser-
tion, paragraph indent, destructive
backspace, move cursor left/right one
character of up/down one line, quit
program, write document to disk,
print document to printer, load new
document, go to end of document, go
to beginning of document, next page
or screen and previous page or
screen.

Besides its slow speed, which is not
unbearable, Notepad80 suffers from
the same problem that affects all
word processors written in Extended
BASIC, namely that you can only
modify one line of existing text at a
time. Any changes you make to a line
do not affect text on adjacent lines.
This makes it difficult to insert lots of
text within a line and have the whole
document look good. You can, of
course, insert blank lines within

September/October 1998

existing text and then add additional
text to these blank lines.

Terminals that hook to the RS-232
port are not easy to find. I am not
sure if they are still manufactured.
When you can find one they are
either free or almost free.

Notepad80 is public domain. The
author asks no money for his efforts,
but welcomes your suggestions and
comments. Send me $1 and I will
mail it to you on a SSSD TI disk.

AcCCEss

Walid Maalouli (author of
Notepad80), 757 Main St., Olean, NY
14760; e-mail wmalouli@eznet.net

Bruce Harrison (author of
Download File Converter),5705 40th
Place, Hyattsville, MD 29781; e-mail
rottencatl3@hotmail.com; phone
(331) 277-3467

Charles Good (source of software
described in this article), P.O. Box
647, Venedocia, OH 45894; e-mail
good.6@osu.edu; phone (419) 667-
3131

USER NOTES o o

Program checks
for FOR/NEXT errors

The following program, by Jim
Peterson, checks for FOR/NEXT
nesting errors in BASIC and Extend-
ed BASIC programs. To use it save the
program you want to check in
MERGE format and follow the
onscreen prompts.

F/NCHECKER

90 JIM PETERSON DISK program
100 DISPLAY AT(3,1)ERASE ALL
: "FOR/NEXT CHECKER": : :” To
edit a program, SAVEd in”:”
MERGE format, for FOR/NEXT":
“nesting errors.”
110 DISPLAY AT(12,1):“FILENA
ME? DSK” :: ACCEPT AT(12,14)

MICROpendium * September/October 1998 « Page 53

:F$:: OPEN #1:”DSK”&F$, VARI 130 A=POS(M$,CHRS (140),P)::
ABLE 163,INPUT :: R=1 :: CAL B=POS (M$, CHR$ (150) ,P):: IF A
L CLEAR :: DIM W$(75) +B=0 THEN 120 :: IF B=0 THEN
120 IF EOF(1)=1 THEN 230 :: C=A ELSE IF A=0 THEN C=B EL
P=3 :: LINPUT #1:M$ Continued on page 54

"0 Seties 1994-1995

Q0 Series 1993-1994 |

D Series 1992-1993 (Apr

[Series 1991-1992 (Apr: 1992, 6 disks)-......
r 1991, 6 disks)...

; ar 1991, 6 disks) ...

1988-Mar 1989, 6 disks)

tern’s collection of 11

Page 54 » MICROpendium ¢ September/October 1998

USER NOTES

Continued from page 53
SE C=MIN(A, B)
140 LN=ASC (SEGS$ (M$,1,1))*256
+ASC{SEGS$ (MS,2,1))
150 IF C=B THEN 180 :: V$=SE
G$ (M$,A+1, POS(MS$,CHRS (190) ,A
)-A-1):: DISPLAY AT(R, 1) :LN;
“FOR “;V$:: W$(R)=V$:: GOS
UB 250 :: P=C+1 :: Zz=0
160 FOR J=1 TO R-2 :: IF V$=
W$ (J) THEN DISPLAY AT (R-1,23)
:"ERROR!”
170 NEXT J :: GOTO 130
180 X=POS(M$,CHR$(130),B)::
IF X=0 THEN X=POS(M$,CHRS$ (0
,B)
190 V$=SEG$ (M$,B+1,X-B-1)
200 FOR J=1 TO R-1 :: IF V$<
>W${J)THEN 220 :: DISPLAY AT
(J,18):LN;:: IF VS$S<>WS$(R-1-
Z) THEN DISPLAY AT(J, 23) : "ERRO

R?”"

210 P=C+1 :: WS(J)="" :: Z=2
+1 :: GOTO 130

220 NEXT J :: DISPLAY AT(R,5

) :LN; "NEXT “;V$:: DISPLAY A

T(R,23) :"ERROR!” :: GOSUB 25
0 :: P=C+1 :: GOTO 130

230 CLOSE #1 :: DISPLAY AT(R
,5) :"ANY KEY TO QUIT”

240 CALL KEY(0,K,S):: IF S=0
THEN 240 :: END

250 R=R+1 :: IF R=24 OR R=48
THEN DISPLAY AT(24,1) : "PRES
S ANY KEY TO CONTINUE” ELSE
RETURN

260 CALL KEY(0,K,S):: IF S=0
THEN 260 ELSE CALL CLEAR ::
RETURN

Running A/L
programs from XB

The following was written by John
Bull and comes from an online TI
FAQ.

To run from Extended BASIC, an
assembly language program must be
written for that purpose or modified.
Extended BASIC cannot use files
created by the C (compressed) option
of the assembler. Extended BASIC
does not handle DEFs but the address

Have a subscription problem?
Didn’t receive a disk?

You can call us at 512-255-1512
between 9 a.m. and noon Saturdays CT,
or fax us anytime at 512-255-1512;
or e-mail us at
micropendium@yahoo.com.

of utilities must be EQUated. For
instance, a program written for the
Editor/Assembler loaders might
begin:

DEF START
REF STRASG, STRREF
For XB, this should be:
REF START
STRASG EQU >2010
STRREF EQU >2014

The list of EQUates for XB is on
pages 415 and 416 of the Editor/
Assembler manual. Modifying an E/A
program to run from XBASIC is
sometimes as simple as the above.
Note that the E/A manual has a typo.
Page 416 should read NUMREF EQU
>200C

One way you can run an assembly
language program from XBASIC is to
put the following at the beginning of
your XBASIC program:

10 CALL INIT
20 CALL LOAD(“DSKn.FILENA
ME”)

“FILENAME” is the name of the
assembly language program.

Now the program is in memory
and can be run with:

CALL LINK(“START")

“START” is the entry point as
defined in the program.

Another way, involving more work
but often more convenient, is to
embed the assembly language
program in your XBASIC program
where it will remain, ready to run,
whenever you load the XBASIC
program. There are two programs
available to do the embedding. One is
Harry Wilhelm’s HML (High

MICROpendium * September/October 1998 « Page 55

Memory Loader) and the other is
Scott Kaplan’s ALSAVE, which loads
into low memory. HML is easier to
use but will not work with large
XBASIC programs.

‘Whichever way you load the
assembly language programs, it
remains in memory until you do
CALL INIT, or BYE. Thus, it is
available in other XBASIC programs
that you RUN from the first one.
Your assembly language program will
remain in memory even after issuing
a“NEW” from XBASIC.

DISKS/BACK ISSUES

Q0 Back Issues,$3.50 each to March
1996, later $6 each. List issues on
separate sheet.

No price breaks on sets of back
issues. Free shipping USA. Add
$1, single issues to Canada/
Mexico. Other foreign shipping
75 cents single issue surface,
$2.80 airmail. Write for foreign
shipping on multiple copies.
OUT OF STOCK: V1#1-2; V2#1

GENEVE PUBLIC DOMAIN DISKS
(SSSD unless specified)

These disks consists of public

domain programs available from

bulletin boards. If ordering DSDD,

specify whether Myarc or CorComp.

S$SSD DSSD DSbD

O Series1 $9 $7 $5

O Series2 $9 $7 $5

QO Series3 $9 $7 $5

0 Series4 $9 $7 85

Q Series5 $9 $7 $5

O Series6 $9 $7 $5

