Subscription Fees

O 6 issues USA $35
Q6 issues Canada/Mexico $42.50
O 6 issues other countries surface mail
___ Surface mail $40
__ Air mail $52
Outside U.S., pay via postal or interna-
tional money order or credit card;
personal checks from non-U.S. banks
will be returned.
ADDRESS CHANGES: Subscribers
who move may have the delivery of their
most recent issue(s) delayed unless
MICROpendium is notified six weeks in
advance of address changes. Please your
old address as it appears on your mailing
label when making an address change.

Check each item ordered (or list
on separate page and enter total

amount here
0 WO

Check/MOQ

Card No.
Expiration Date
(Minimum credit card order is $9)

| Signature.

| (Required on credit card orders.)

| No sales tax on magazine subscrip-
tions. Texas residents add 7.75%

| sales tax on other items, including

| back issues and disk subscriptions.

| Credit card orders add 5%.

Name

Address

City, Stte __7IP
! The set of numbers at the top of
your mailing label indicates the
cover date of the last issue of your
| subscription.

L_.___....____.______.____________l

PERIODICALS

11/97
LEONARD CUMMINGS

815 NORTH BLACKHO
WAPAKONETA

A

OF

45895

OoH

Covering the TI99/4A and Geneve home computers

MICROpendium

Volume 14 Number 5 September/October 1997 $6

See Page 16

@ pointers -
What are they"

See Page 32

INSIDE
Delphi dumps its Tl forum

Fest West '98 is ready for Lubbock
Plus, news, views and reviews

Page 2 * MICROpendium °* September/October 1997

MICAOpendium

MICROpendium (ISSN
10432299) is published bimonthly
for $35 per year by Burns-Koloen
Communications Inc., 502 Windsor
Rd., Round Rock, TX 78664-7639.
Periodical postage paid at Round
Rock, Texas. POSTMASTER: Send
address changes to MICROpendi-
um, P.O. Box 1343, Round Rock,
TX 78680-1343.

No information published in the pages
of MICROpendium may be used without
permission of the publisher, Burns-
Koloen Communications Inc. Only
computer user groups

While all efforts are directed at
providing factual and true information in
published articles, the publisher cannot
accept responsibility for errors that
appear in advertising or text appearing in
MICROpendium. The inclusion of brand
names in text does not constitute an
endorsement of any product by the
publisher. Statements published by
MICROpendium which reflect
erroneously on individuals, products or
companies will be corrected upon
contacting the publisher.

Unless the author specifies, letters will
be treated as unconditionally assigned
for publication, copyright purposes and
use in any other publication or brochure
and are subject to MICROpendium’s
unrestricted right to edit and comment.

All correspondence should be mailed to
MICROpendium at P.O. Box 1343, Round
Rock, TX 78680.

Foreign subscriptions are $42.50
(Canada and Mexico); $40 surface mail
to other countries; $52 airmail to other
countries.

All editions of MICROpendium are
mailed from the Round Rock (Texas)
Post Office.

Mailing address: P.O. Box 1343, Round
Rock, TX 78680.

Telephone & FAX: (512) 255-1512
Internet E-mail: jkoloen @earthlink.net
Home page: http://www.earthlink.net/
~jkoloen/
John Koloen
Laura Burns

Comments
A format changecceouevueenee.....

Extended BASIC

Adventures with CALL KEY 6
NOTEWORTHY, a game with a
musical themecccoeevevvunn.... 10
Random Symmetrical Character
GENeratoro.c.eeveverereeeeereenennnn, 32

Geneve
My-Sideprint..........ccocoverrvrrerrierennnn. 8

The Art of Assembly

Running in circlesun................ 16

Hardware
Pointers — What are they? 32

Reviews
PC99 revisited, SCSI cat, Textloader,
Basic Builder, Extended BASIC V2.5

and V2.6.....cccvnminineeeerenn, 42
VaT9

Using Windows 95 to put V9T9 in its
Place ..., 49
Fair Updates

15th Chicago Faire slated 50
Get your reservations........................ 51
User Notes

Hidden powers of MIDI Master, PC-TI
file transfers, and a way to speed up
BASIC ..., 52

MICROpendium ¢ September/October 1997 « Page 3

THE CHICAGO TI USERS GROUP

presents the

15th Annual
Chicago TI International

World Faire
supporting TI 994A and 9640

November 8, 1997

EVANSTON PUBLIC LIBRARY
Evanston, Illinois
(corner Church & Orrington)
9:30 a.m. - 4:00 p.m.
Vendors-demonstrations-Seminars-User Groups
door prize drawings

for further information contact: Hal Shanafield (847)864-8644

Page 4 « MICROpendium * September/October 1997

A format change

Sharp ‘rea(‘lers will notice that MICROpendium looks and feels a little different.
We’re doing it to save some money. Given our current subscription level, we were
throwing out half of the pressrun. The minimum is more than double our sub-
scriber list.

We’re running 56 pages, which is the equivalent of about 28 of the full-size
pages you’re used to. Given the options, it’s the best way for now. We thought
about using full-sized, three-hole drilled sheets but that would have required 9x 12
envelopes for mailing.

What’s next for MICROpendium? Well, we don’t expect Microsoft to buy a
block of non-voting stock. We had a choice to make — either cut our printing cost
dramatically, or cease publication.

We’ll see how this works. Of course, it all depends on how many of you decide
to continue to subscribe to MICROpendium. We will keep it going in one form or
another as long as there is enough money to pay the bills. As always, we appreciate
your continued support.

L also have a new email address: jkoloen@carthlink.net; and our web page is
now at another location: www.earthlink.net/~jkoloen.

DELPHI CLOSES TI NET

TI99/4A users who attempted to log on to TI NET, Delphi’s SIG for the TI99/
4A and Geneve, found it closed as of Sept. 5.

According to messages on the TI list server maintained by Tom Wills, Delphi
decided on discontinuing the service despite efforts by sysop Jerry Coffey. The
text-only service was accessible by TI99/4As and Geneve computers.

UPDATE FROM RICH GILBERTSON

Good news and not so good news from Richard “RXB” Gilbertson. His system
went down at Fest West, the victim of a grounding problem. As a word to the wise,
he recommends grounding separate power supplies (such as for disk drives)
through the plug and not the cable. What happened to his system, which was
grounded through the cable, was that the ground ran back from the drive into
several cards, burning out the interface chips. Fortunately, the chips arc available at
Radio Shack and are cheap, costing about $5 per card.

The delay in the availability of the RXB module will continue for a while. Don
O’Neil, who is responsible for the card design, is busy with work and is working
hard on the SCSI DSRs. The RXB module is next in line. Don, and Bud Milis,
took a hit to the pocketbook because they had developed and produced 50 RXB

boards only to find that everything was backwards and upside down. This cost
about $1500. Ouch!

Version 1005 of RXB was supposed to be the last freeware/shareware version
available. Somehow V1006 was pirated and made available. However, docs are not
available for this version, and I’m not going to talk about all the nifty things it
dogs, Let it suffice that the current version is 1011 and includes support for AMS,
editor/assembler, and a very nifty disk manager. This version, or a later one, will

MICROpendium * September/October 1997 « Page 5

COMMENTS

be used in the RXB module when it comes out.

Extended BASIC users now you can delete, merge, and save files in Extended
BASIC. RXB also lets users copy files, rename files and director, create directo-
ries, delete directories, protect and unprotect files. There’s even a command to
copy or rename all files or a single file from one device to another. It supports path
names up to 256 characters long. By contrast, the Myarc Hard and Floppy Disk
Controller has a limit of 39 characters. By the way, RXB disk manager routines
work with any floppy or hard disk controilers. There’s also a potentially dangerous
command called CUT DIRectory that will automatically erase all the files in any
directories that you want to delete. With the remove directory command, you first
have to delete the files in the directory before the directory itself can be deleted.
CUT DIR does it all in one press of the key. Imagine typing CUT DIR C:/ and
pressing enter by mistake. Your entire disk drive can disappear. Gilbertson is aware
of this and has included a verification line that asks the user whether he really
wants the CUT DIR command executed. In the hands of a responsible user, this
type of command can save a lot of time. But you definitely don’t want to tell your
younger children about this command.

At this point in its evolution, RXB includes a super-fortified version of Ex-
tended BASIC, editor/assembler, and a disk manager. Coming next is a sector
editor that will work with any disk controller. Gilbertson says he can do this
because he’s writing it in GPL, which results in very compact code.

On the horizon for Gilbertson, as soon as he gets his system working again, is a
project to rewrite GROMs for the Western Horizon Technologies keyboard
interface. One of the things he’s planning to do is a 16-bit emulation of AMS in the
keyboard. It should be quite speedy.

Responding to a criticism about RXB’s powerup routine, which appeared in the
July/August edition of MICROpendium, Gilbertson says that the RXB powerup
routine takes the lowest priority of any powerup routine. All other powerup
routines, including RAMdisks and even BASIC, happen before RXB powers-up.
This is because, he boasts, he is the only programmer to follow the TI standards for
powerup routines.

Comparisons of Super Extended BASIC to RXB also leave Gilbertson a little
weary. He notes that SXB is basically GRAM Kracker Extended BASIC with the
addition of a plotting routine. GKXB was written by Danny Michaels. “RXB was
done from scratch,” Gilbertson says, proudly.

—JK

OBITUARY

Earl Raguse of Huntington Beach, California, died July 21. He held offices in
the Users Group of Orange County and edited its newsletter, the UGOC ROM,
and was the author of a number of articles on the TI99/4A.

On becoming ill, he donated much of his TI collection for the Southern
California Computer Group for its school program, according to the SCCG
newsletter, The Computer Voice.

Page 6 * MICROpendium * September/October 1997
EXTENDED BASIC

Adventures with CALL KEY

BY EARL RAGUSE

The following article was originally published under the column XBASIC
Miscellany.—Ed.

One of the things I learned while reworking TIPS 1.6 to 1.6/ER and writing
TIPSLABEL was that TI didn’t tell us in the Extended BASIC manual, or the
later addenda, all we should know about Extended BASIC. At least in what I
could find. In an article I had written about TIPS 1.6, I wrote that after [had
converted TIPS to using CALL KEY(3,K,S), DISPLAY AT, and ACCEPT AT, 1
could not enter lowercase characters in ACCEPT AT.

I had some recollection that I had done it once upon a time, but I was not sure
about it. Then I remembered that XB does not have a command to restore the
lowercase character set once the set has been redefined. CHARSET does not do
it. It only restores the uppercase set. That presumably was because the early
versions of XB did not have a lowercase set. I then reasoned that since that was
true, it made sense that ACCEPT AT would accept only uppercase characters.

['had plans for writing an assembly routine to LINK that would do it. L had
once written an assembly program to take keyboard text input and, further, I
knew that Adrian Robinson had written in the ROM newsletter a very detailed
ACCEPT AT routine in assembly. My problem was that I didn’t know how to
get into Irwin Hott’s LOADER program for TIPS. That is where the assembly
routines are hidden, submerged below XB.

How wrong I was! I did not know until I got a call from Adrian (Robbie) |
Robinson that the problem was not with ACCEPT AT, but the fact that I had !
used CALL KEY(3,K,S) to ensure that all entries to CALL KEY would be in
uppercase, instead of running them all through Ron Wolcott's assembly routine
for converting inputs to uppercase. I didn’t recall where I learned that CALL
KEY(3) did that. Surely not in the XB manual. But I knew it. It turns out it was
the Users Reference Guide.

What I didn’t know was that once youdoa CALL KEY(3,x,y), all — and I
mean ALL — keyboard input thereafter, for CALL KEY, INPUT, LINPUT,
ACCEPT AT, etc., is restricted to uppercase.

I had used that fact for CALL KEY in my DIRectory program. I didn’t know
that it stayed that way until you returned to the title screen. | also didn’t know
that you must do a CALL KEY(5.x,y) to restore normal upper and lowercase
before any statement that calls for keyboard input. It matters not what “x” and
“y” are, so long as they are legal numeric variables. Lowercase character
redefinition has nothing to do with this. That is another story, where again

MICROpendium ¢ September/October 1997 « Page 7

EXTENDED BASIC

Robbie used his assembly knowledge to help me out of an XB problem with
CHARSET. '

After the phone call, I searched everything I had on XB, to no avail. I could
find nothing to tell me this. The best source on the keyboard is the User’s
Reference Guide (the “green” book), but it does not even imply that CALL KEY
works that way.

About two days later I got a letter from Australia, from the Hunter Valley
assembly guru Ross Mudie, telling me the same thing Robbie did. I then got
suspicious. Why are the only people who know this the assembly guys? I then
scoured the TI editor/assembler manual.

First, I found a reference to the User’s Reference Guide. However, there was
a discussion (see page 250) about the fact that the keyboard “device” was
selected by placing a number — they discuss only numbers 0-3 — into >.8374,
(Hex numbers are indicated by preceding with “>* as in >8374.) Now this)
discussion makes no reference to CALL KEY. It is generic, and therefore refers
to all keyboard input. Also, once a number is loaded into location >8374, it stays
there until changed.

I can now assume that the XB CALL KEY does, among other things, a CALL
LOAD of the key number into >8374 that requires a new CALL KEY or CALL
LOAD statement to change >8374 to a new number. I have tried to test this
theory in XB, but to no avail. Robbie says it works, but it won’t work for me. If
I were working in assembly, this would be rather understandable, but to the
average reader of the XB manual, TT left it totally unexplained.

So what does all this mean? If you wish XB to return uppercase only, do a
CALL KEY(3,x,y). To restore lowercase, do a CALL KEY(5,x,y). To keep the
previous state (i.e., don’t disturb the keyboard device previously selected), use
CALL KEY(0,x,y). I note that most XB programmers use CALL KEY(0,x,y)
almost exclusively. They are then not taking advantage of the computer’s (and
XB’s) capabilities. I hope after this you will.

Harrison releases SCSI cataloger

Bruce Harrison has produced a 16-sector program called SCSICAT, which
will catalog any root directory or subdirectory on a SCSI drive. By pressing P,
the user has the option of printing out the contents. Instructions are included on
the disk. 4

Harrison says that, although the utility is designed mainly for SCSI owners, it
will work for any disk drive, including floppies and RAMdisks.

The program is available for $1 from Harrison at 5705 40th Place,
Hyattsville, MD 20781, or from the Lima Users Group, P.O. Box 647,
Venedocia, OH 45894.

Page 8 - MICROpendium * September/October 1997

MY-SIDEPRINT
lets Geneve users print booklets

BY JIM UZZELL
©1997 DDI SOFTWARE

The following program will print an ASCII file rotated 90 degrees in two
columns of 40 characters, each with 60 lines, using graphic commmands,
producing a full page.

There are some requirements to use this program. First, you must change the
graphics commands to match your printer, which are explained below.

Second, the file MUST be exactly 120 lines long and the width cannot exceed
40 characters unless you use A4 paper.

It is recommended that MY-Word be used to create or reformat a file to fit the
above limits. The file cannot have special characters, including the carriage
return or the tab info, so you must save the file using the PF C option of MY-
Word.

The following lines MUST be changed to match the printer you are using:

Line 170 defines the graphic mode to normal density with a maximum of 240
dots. This is the “K” graphics command. The 240 dots equal four inches, which
equals 30 characters times 2 equals 60 characters, or 480 dots, and is the
maximum for the “K” mode.

Line 180 sets the line spacing to 24/216ths. Equivalents are 40/360, 20/180,
and 8/72.

Line190 sets one tab at 40.

This program looks at each line of text and pads each line to exactly 40
characters if necessary. This is is done in lines 230-250. If you use A4 paper, you
can increase the character width to use the extra length of paper.

After you have replaced the graphic commands, do the following: In MY-
Word create an ASCII file of 40 characters and 120 lines using the uppercase O.
Then remove the “REM” in line 580. This will allow you to print two lines of
the file so you can adjust the line spacing. After that, put the REM back and test
the complete file.

The ESC key is active during the printing process, in case there is a need to
stop the printing, and will help reduce the paper waste. This program can be
used to produce a pamphlet. To do this, create or reformat a document. Then

divide the total lines by 60. If it does not divide equally, add blank lines to the
end of the file. Then save each 60 lines to a file. Then merge the files, i.e last
and first, second and next to last, etc.

Before you start merging, you must determine which files to merge, depend-
ing on whether you want page 1 to be actually page 3 by using a blank sheet of

MICROpendi

MY-BASIC

* September/October 1997 « Page 9

paper as the front and back cover. A method that works for me is using the
tractor feed strips. I use pieces of these to represent total sheets of paper re-
quired. Each sheet equals two files (front and back). I fold all of these together,
with the open end to the-right. Then I number them, which tells me the files T

need to merge together.

Example — one strip equals four pages and page 3 would be merged with
page 2. Also page 1 would be merged with page 4. The final format would be 2-

3, 4-1, which is two files of 120 lines.

If you want page numbers, you can divide your document by 58, then add a
blank line and a page number line. Using page numbers requires you to deter-
mine if the first page is actually page 1, i.e. a cover sheet with info inside or a
table of contents. If you do not center the page numbers, the odd numbers are
toward the right margin, even numbers are toward the left margin.

This program is slow because the recalculation of character patterns is 100

percent MY-BASIC code.

MY-SIDEPRINT
100 !MYSIDEPRINT (X)))
110 !'by DDI SOFTWARE 260 NEXT X

120 !COPYRIGHT 1997

130 DIM X$(120)

140 BL$=RPTS$ (CHR$(0),8)

150 7,8=0

160 CLS :: GOTQ 670

170 DEF DF2$=CHRS$ (27)&CHR$ (7
5) &CHRS (240) &CHRS (0)

180 DEF DF3$=CHR$ (27)&CHRS (5
1) &CHRS (24)

190 DEF DF4$=CHR$(27)&CHRS (6
8) &CHR$ (40) &CHRS (0)

200 OPEN #2:DISK$,INPUT ,DIS
PLAY ,VARIABLE 80

210 FOR X=1 TO 120

220 LINPUT #2:X$(X)

230 IF LEN(X$(X))=1 THEN IF
ASC(X$ (X)) =32 THEN XS$(X)=RPT

$(", 40)
240 IF LEN(X$(X))=0 THEN X$(
X)=RPT$ (" ",40)

250 IF LEN(X$(X))<40 THEN X$
(X) =X$ (X) &RPTS (* ", 40-LEN(X$

270 CLOSE #2 :: GOSUB 380
280 FOR X=1 TO 40 :: GS$=""
t: GS1$="" :: Y$=""

290 FOR Y=60 TO 1 STEP -1
300 Y$=YS$S&SEGS (X$(Y+S),X,1)
310 NEXT Y

320 IF LEN(YS$)<60 THEN Y$=Y$
&RPTS (" ",60-LEN(YS))

330 FOR Y=1 TO 30

340 Al=ASC(SEGS(YS$S,Y,1))
A2=ASC (SEGS$ (Y$,Y+30,1))

350 IF Al<33 THEN GS$=GSS&BL
$

360 IF A2<33 THEN GS1$=GS1$&
BLS

370 GOTO 420

380 OPEN #1:"PIO.CR",VARIABL
E 254

390 PRINT #1:DF4$;DF3$

400 PRINT #1:

410 RETURN

Continued on page 10

Page 10 * MICROpendium * September/October 1997

Continued from page 9
420 IF Al>32 THEN CALL CHARP
AT (A1, CHS)
430 IF A2>32 THEN CALL CHARP
AT (A2,CH1S)
440 FOR L=15 TO 1 STEP -2
450 IF Al>32 THEN B1=VALHEX (

SEGS (CH$,L,2))

460 IF A2>32 THEN B2=VALHEX(
SEGS$ (CH1S$,L,2))

470 IF Al1>32 THEN GS$=GS$&CH
R$ (B1)

480 IF A2>32 THEN GS1$=GS1$&
CHRS (B2) .

490 NEXT L :: NEXT Y

500 PRINT #1:DF2S;

510 FOR C=1 TO 239 :: PRINT
#1:SEGS$ (GSS$,C,1);

520 NEXT C :: PRINT #1:SEGS$(
GS$,240,1)

530 PRINT #1:CHRS$(27);CHRS (1
0);

540 PRINT #1:CHRS(9);DF2$%;
550 FOR C=1 TO 239 :: PRINT
#1:SEG$ (GS1$,C,1); :: NEXT C
560 PRINT #1:SEGS$(GS1$,240,1
)

570 CALL KEY(0,K,SS) :: IF X
=155 THEN 610

580 !IF X=2 THEN 610

590 NEXT X :: IF S=60 OR Z2=1
THEN 610

600 z=1 :: S=60 PRINT #1:

PRINT #1: :: GOTO 280

610 PRINT #1:CHR$(12);CHRS (2
7):"e";

620 CLOSE #1

630 CLS :: END
640 DISPLAY AT(10,1) :“PRINT

ANOTHER DOCUMENT N*"

650 ACCEPT AT(10,24)SIZE(-1)
:N$

660 IF N$="N" THEN 630

670 DISPLAY AT(6,1):" MYSID

EPRINT"

680 DISPLAY AT(8,1):"By DDI

SOFTWARE"

690 DISPLAY AT(12,1) : "ENTER

path.filename"”

700 ACCEPT AT(13,1)BEEP :DIS

K$

710 CLS :: CALL MEMSET (XS (),

") i Z,8=0

720 GOTO 200

: GOTO 640

An Extended BASIC game
with a musical theme

This Extended BASIC game, called Noteworthy, was written by R. Trueman.
The object of the game is to direct a critter to eat musical notes and ascend
through various levels to the top. It uses keyboard input, specifically the S and D
keys to move and the P key to Jump. As it is, it runs slowly but the graphics are
quite well done. It requires a memory expansion.

100 CALL CLEAR :: CALL CHARS
ET :: CALL SCREEN(2):: RANDO

MIZE :: CALL MAGNIFY(3):: CA
LL CHARPAT(89,Y$):: CALL CHA

NOTEWORTHY

R(74,Ys) 1251
110 CALL COLOR(3,7,11,4,7,11
,5,5,8,6,5,8,7,5,8,1,16,2,2,
13,11,8,4,15,11,2,16) 1208
120 CALL CHAR(119,“080C0B083
878783",81,"”,95,7",124,"" 1
25,”0E1115111F38777F", 126, ""
,127,"7088A888F81CEEFE”) ! 110
130 CALL CHAR(92,"”1833777F7E
7C7839391COE47A78FFF7F0080C0
E0202020A022257FFF0780C2FE")
1023

140 CALL CHAR(136,"000103070
404040544A4FEFFE001437F18CCE
EFE7E3E1E9CI9C3870E2ESF1FFFE”
) 1148

150 CALL CHAR(106, "18247E16F
TETCTFF", 40, "4B4BABAB4BAR4B4
B012452ACB6DBBFFFF8A4DAFAESD
AF4E110461AA4532E1B57",118, "
30787838080B0C0O8") 1004

160 CALL CHAR(107,"”18247ES5ED
TC3FTFF",44,"089228D5564AAF6
DFOC4E9B4CAFBFDFF270B532F97B
TEFFF”,116, "FFFAF2E2C2828282
v) 1217

170 CALL CHAR(36,”"FF818181FF
000000FF81818181FF0000FF8181
818181FFO0FF818181818181FF",
33, "FFFF”,34,"FF81FF", 35, "FF
8181FF") ! 146

180 CALL CHAR(88, "FFFDDB6D35
4A2480872F5B172F5B251FFFF7ED
E9FACABOE4FFBFDF532D97230F")
1252

190 CALL CHAR(117, "FFS5FAF474
3414141",140,701010101010101
01FF403F100F0403018080808080
808080FF02FC0O8F020C08") 1066
200 CALL CHAR(60,”0E1115111F
3D777BFCFFFFTF7F3F1F0F7088A8
88F8B8EEDE3FFFFFFEFEFCFSE” , 1

MICROpendium * September/October 1997 « Page 11

04, "18247E76E7FT3CFF”, 105, "1
8247E66F7EFECFF”) 1209
210 CALL CHAR(128,”071F3F716
EEFEDF7FIFFFFTF7F3F1F07EQF8F
CC6829B93CTFFFFESCL94FCFCE”)
1080
220 CALL CHAR(132,"071F3F634
1D9CYE3FFFFA783293F3F07EQOF8F
C8ET6FTBTEFOFFFFFFEFEFCF8E")
1067
230 CALL CHAR(59, "6C547EC6FE
FE7C38",108,"03060C0C1F3F7F7
FFFFFFF7FTF3F1F07C020E0AQF8E
CFEDEEOFFFFFEFEFCFS8E”) 1170
240 CALL CHAR(112,7030407050
T1F377F7B07FF7F7F3F1F07C0603
030F8FCFEFEFFFFFFFEFEFCFSE”)
1227
250 CALL CHAR(96, 70728382909
78F8FFBFCOF1F1F9FD7F2AE014DC
F4EODE1FFFFDO38F8F9FBFFE54")
1015
260 CALL CHAR(120, ”"07283B2F0
D7BF8FFBFCOF1F1F9FD7F25E0141
C94901E1FFFFD038F8F9FBFFES4 "
)1024
270 CALL CHAR(58,”",100,”1E2
32333231F0373DB8F0703318BC77
F000000000080848AC8CSESF8FSF
CFEFF") 1156
280 SC,B0O,C0=0 :: ME=3 :: LE
,WA=1 :: CALL CHAR(104,”0000
0000000121511313171F1F3F7FFF
78C4C4CCC4AF8COCEDBF1E0C08CD1
E3FE”) !159
290 DISPLAY AT(2,1):"ZXXX[
[2XXXX[ZXXXX[ZXXX[*+),Y
Y %)), Y -) 4) . *4))rY oy
Y *Y *Y *y *Y XY *y
Y *Y *Y *Y *[X[™ 1117
300 DISPLAY AT(6,1):"*Y *Y *
Continued on page 12

[

*

Page 12 - MICROpendium * September/October 1997

Continued from page 11
Y YY XY *Y x4) | xy xy x
Y XY *Y kY *Y kY *[XZ
Y *[XXZY *Y *[XX[-. -)))

=) -. -))).” 1153
310 CALL HCHAR(20,1,81,160)!
017
320 DISPLAY AT(12,1):”

! R
L2 2 3 T

$ $$ & $$5&& %

T % O%%E 0% % % %%%” 1128
330 DISPLAY AT(16,1):” & &
& $ S &x S && § v
A B R # Ve
N Lo g 1173
340 DISPLAY AT(20,1) :”00Q000
FROMOQROTRUEMANQQQOQ0000QQQQ
QQTHEQBADDIESQQQOQQQQQ1QROBO
IDSQQQO2QSLUGQCREATURES3QGRUM
PIESQQ4QMADQDOGSQQQQQQ” :: G
OSUB 1090 !158
350 CALL KEY(0,K,S):: IF S=0
THEN CALL SOUND(-90, (RND*20
)+110,19) :: GOTO 350 1235
360 CALL KEY(0,K,S):: IF S=-
1 THEN CALL SOUND(-90, (RND*2
0)+110,19):: GOTO 360 ELSE C
ALL HCHAR(20,1,81,160):: DIS
PLAY AT(20,1) : “SQANDQDQTOQMO
VEQQLEAPQWITHQP” 1182
370 DISPLAY AT(21,1) : "WHENQU
NDERQLARGESTQPANELSQTOGOQTOQ
HIGHERQFLOORQQQPICKQUPALLQNO
TESQFORQAQBIGGERQBONUS” :: G
OSUB 1090 !248
380 CALL KEY(0,K,S):: IF §=0
THEN CALL SOUND(-90, (RND*20
)+110,19):: GOTO 380 ELSE CA

LL CLEAR :: CALL COLOR(1,10,
16):: CALL SCREEN(16) 1058
390 CALL VCHAR(3,1,42,22)::

CALL VCHAR(3,31,42,22):: CAL
L VCHAR(3,2,89,22):: CALL vC
HAR(3,32,89,22):: FOR Y=3 TO
23 STEP 5 !151

400 CALL HCHAR(Y,2,91):: CAL
L HCHAR(Y+1,2,43):: CALL HCH
AR(Y,31,90):: CALL HCHAR(Y+1
,31,44):: NEXT Y 1121

410 DISPLAY AT(1,1):”QQMEN";
TAB(14); "SCORE”; SC: "LEVEL” ; L,
E;TAB(14);”BONUS”;LE*10 :: C
ALL HCHAR(1,9,59,ME):: ON WA
GOTO 420,510,560,610 1079
420 DISPLAY AT(3,1) : "XXXXXXX
KXXXXEXXXKXXKKXXX [12X)))))))
NI tw))) . -

v
WYV W VW w w “ 1236
430 DISPLAY AT(8,1):"X[''ZXX
XEXXXXXX [$SZXXKKXXKXKXX) . -))

tu)))))) . -)tu))tu))
v
aiatd w v v 116l

440 DISPLAY AT(13,1) :"XXXX["
‘E&FBSSZXX [&EHHIBZRKXK)))) .
=)). =)
v
wow Vww wvw" 1130
450 DISPLAY AT(18,1) :”XXXXXX
XX[ZISSZXRXX[I177112Z))))))
tu. -, -))tu. -
w W
wovVWw o w Vv v wv” 1219
460 RESTORE 930 1002
470 DISPLAY AT(23,1) : "XXXXXX
X XEXXXXXXXXXXXX))))))
DI 117
480 FOR Y=2 TO 7 :: READ A,B
:: CALL SPRITE(#Y,140,14,A*
8+1,B*8+1):: NEXT Y :: READ
A,B,D,FT,HT :: CALL SPRITE (#
8,HT,D,A,B,0,1+LE) 1093

MICROpendium * September/October 1997 « Page 13

NOTEWORTHY

490 READ A,B :: M=A :: N=B :
: CALL SPRITE(#1,108,9,M,N)!
096
500 CALL KEY(0,K,S).:: IF S=0
THEN CALL SOUND(-90, (RND*20
00)+2000,10):: GOTO 500 ELSE
710 1029
510 DISPLAY AT(3,1) :"XXXXXXX
XXX [7 ZXXXXXKXXKKKKKK)))))))
Yeu. =)
WV WV
wWwW v ww v v’ 1120
520 DISPLAY AT(8,1) : "XXXXXXX
XXXXK [V &&E%SSH###!12))) tu))
)))tu. -
v
wv w vwww v w v’ 105
530 DISPLAY AT(13,1):”XXXXXX
XXKKXXXXX [ZX[$$&&2ZXX)) tutu
)N) tu. -). -))
wv
WV W v vv” 1208
540 DISPLAY AT (18,1):"X['##
117 g ZXXXK[&&SSZX ([Z) .
=1, -). -
v w
v wwv v w” 1060
550 RESTORE 940 :: GOTO 470
1180
560 DISPLAY AT(3,1):"X[''ZX[
E&EZXXX [#HSFZRXXXXXKKK) . -) .
=) SN
wv v
wwvw vvv wv v” 1029
570 DISPLAY AT(8,1) : "XXXXXXX
XRAXXXXK [V 1%%/%%112X)))))))
tututu)) . =)
WYWVV
wvv w w v’ !153
580 DISPLAY AT(13,1):"[##"''%
% XXX XXXX

=))tu))tu))))rr)dd))

v
vV www vV v www” 1163
590 DISPLAY AT(18,1):"X['’'ZX
XXXXXXXKK [V ZXXX[$8&&2) . -)
1)) . —)tu. -

vw
VWV w Vv WWV v” 1155
600 RESTORE 950 :: CALL SPRI
TE(#9,128,15,41,220,0,14LE) :
: GOTO 480 !'147
610 DISPLAY AT(3,1):"XXXXXXX
XXKXXXXXKXKKXKK [2XX)))))))

))Ytu)tu)tu)tu). -)
v wwv
WV VW VV wWw wv” 1064
620 DISPLAY AT(8,1):"X[''ZXX
XXXXX XXXXXX), —-))
)rtu)))) eu))))))
wv v

W O Vwyw w o wv” 1243
630 DISPLAY AT(13,1):"X[$5%%
ZXX[&&ZXXXX(##112X[*'2) .
=)y =) .). -

w v
vw wVwW wvwv” 1052
640 DISPLAY AT(18,1):"X{''$S
ZXX[##Z[FBZXXXX[! 1$%2ZX) .
=) eo-0 =) -)

wv
w wv wwv vw wv” !051
650 RESTORE 960 :: CALL SPRI

TE(#9,92,5,161,1,0,3+4LE):: G
OTO 480 1011

660 CALL MOTION(#1,0,0):: CA
LL PATTERN(#1,60)!080

670 Y=(RND*18)+2 :: IF Y>7 T
HEN 690 ELSE CALL POSITION (#
Y,A,B):: CALL LOCATE (#Y,A+8,
B):: CALL PEEK(-31877,0):: I
F O AND 32 THEN 970 !024

680 CALL LOCATE(#Y,A,B):: GO

Continued on page 14

Page 14 MICROpendium * September/October 1997

Continued from page 13
TO 710 1104
690 IF Y<17 THEN 710 :: IF Y
<18 THEN 700 :: CALL MOTION(
#8,0,-1+(LE- (LE*2)),#9,0,-1+
(LE-(LE*2)}):: CALL PATTERN(
#8,FT, #9,FT):: GOTO 710 1131
700 CALL MOTION(#8,0,1+LE, #9
,0,1+LE) : : CALL PATTERN (#8,H
T,#9,HT) 1123
710 CALL PEEK(-31877,0):: IF
O AND 32 THEN 970 !027
720 CALL KEY(0,K,S):: IF S=0
THEN 660 ELSE ON POS(“PpSDs
d”,CHR$(K),1)+1 GOTO 660,770
,770,730,750,730,750 1079
730 CALL POSITION(#1,A,B)::
IF B<20 THEN CALL MOTION (#1,
0,0):: GOTO 670 ELSE CALL MO
TION(#1,0,-4):: CALL PATTERN
(#1,112) 1070
740 K=INT(A/8)+1 :: Y=INT(B/
8)+1 :: CALL GCHAR(K,Y,0)::
IF 0<118 THEN 670 ELSE GOSUB
990 :: CALL HCHAR(K,Y,32)::
GOTO 670 '097
750 CALL POSITION(#1,A,B)::
IF B>220 THEN CALL MOTION (#1

,0,0):: GOTO 670 ELSE CALL M
OTION(#1,0,4):: CALL PATTERN
(#1,108) 1189

760 K=INT(A/8)+1 :: Y=INT(B/
8)+3 :: CALL GCHAR(K,Y,0)::
IF 0<118 THEN 670 ELSE GOSUB
990 :: CALL HCHAR(K,Y,32)::
GOTO 670 !099
770 CALL MOTION(#1,0,0):: CA
LL POSITION(#1,M,N):: CALL G
CHAR(M/8-2,N/8+1,0):: IF (O>
33)*(0<40) THEN 780 ELSE 670
1102
780 CALL GCHAR(M/8-2,N/8+2,P
):: IF P<>0 THEN 670 ELSE CA

LL COLOR(#1,10):: ¥=0 :: 0=M
-42 :: T=M/8-2 1146

790 IF M<17 THEN 1050 ELSE M
=M-7 :: CALL LOCATE(#1,M,N):

© Y=Y-1 :: CALL HCHAR(T,N/8+
1,Y,2):: IF Y=33 THEN 800 EL
SE 790 1070

800 IF M=0 THEN 830 ELSE CAL
L PEEK(-31877,K):: IF K AND
32 THEN 930 1004

810 FOR Y=M TO 0+42 :: CALL
PATTERN (#1,108,#1,112) :: CAL
L LOCATE(#1,Y,N):: CALL PATT
ERN(#1,60):: NEXT Y :: M=Y :
: CALL COLOR(#1,9)1104

820 GOTO 670 !239

830 CALL COLOR(#1,9):: M=M+2

: CALL LOCATE(#1,M,N):: GO

TO 670 1019

840 CO=11 :: CALL HCHAR(18,1
4,32,3):: CALL HCHAR(19, 14,3
2,3):: CALL SPRITE(#1,60,9,1
21,141,#15,108,9,121,1) 1152
850 CALL SPRITE(#14,92,8,121
,16,#13,128,11,121,32,#12, 10
4,5,121,48,#11,96,14,121, 64,
0,8)1214

860 CALL COINC (#CO,121,113,4
,0):: IF O=-1 THEN 870 ELSE
860 1003

870 CALL MOTION(#CO,16,0)::
FOR Y=610 TO 110 STEP -50
CALL SOUND(-60,Y,0):: NEXT
Y :: CALL DELSPRITE(#CO):: C
0=CO+1 1185

880 IF CO0<15 THEN CALL MOTIO
N(#C0,0,8):: GOTO 860 ELSE C
ALL MOTION(#15,0,8) 1062

890 CALL COINC (#1,#15,16,0):
: IF 0=0 THEN 890 ELSE CALL
MOTION(#15,0,0):: CALL PATTE
RN (#1,112)!056

f"f;H’llll!'.--"-.-‘...-.'.!Illlllll'-.-‘

MICROpendium * September/October 1997 « Page 15

NOTEWORTHY

900 CALL CHAR(100,”1C3E7FFFF
FFFFFFF7FTF3F1F0F070100387CF
EFFFFFFFFFFFEFEFCF8FOE08") : :
CALL SPRITE(#9,100,7,100,13
2,-2,0)1081
910 ME=ME+1 :: FOR Y=1 TO 7
: FOR T=610 TO 1110 STEP 50
: CALL SOUND(-50,T,0):: NE
XT T :: CALL HCHAR(1,9,32,8)
:: CALL HCHAR(1,9,59,ME)!164
920 NEXT Y :: CALL DELSPRITE
(ALL) : : CALL CHAR(100,”1E232
333231F0373DB8F0703318BC77F0
00000000080848AC8C8ESF8F3FCF
EFF”):: GOTO 410 !'010
930 DaTA 3,20,8,9,8,26,8,22,
18,8,18,20,121,129,14,120,96
,161,81 1107
940 DATA 3,10,8,12,8,5,13,4,
13,6,13,15,161,1,5,100,104,1
61,209 '019
950 DATA 8,9,8,11,8,13,13,12
,13,16,18,22,41,100,11,132,1
28,161,192 !'235
960 DATA 3,12,3,15,3,18,3,21
,8,11,8,22,121,192,8,136,92,
161,209 1092

970 Y=1 :: CALL SQUND({-90,-7
,0):: SC=SC+BO :: DISPLAY AT
(1,19):8C :: CALL MOTION(#1,

0,0):: CALL PATTERN(#1,124):
: BO,CO=0 :: ME=ME-1 !167
980 CALL COLOR(#1, (RND*13)+2
Y Y=Y+1 IF Y<20 THEN 98
0 :: CALL DELSPRITE(ALL):: C
ALL HCHAR(1,9+ME,32):: IF ME
=0 THEN 1000 ELSE 410 !104
990 BO=BO+(LE*10):: T=(RND*2
000)+1000 :: CALL SOUND(-50,
T,0):: RETURN !148
1000 CALL DELSPRITE (#1,#7)::
FOR Y=10 TO 16 :: CALL HCHA

R(Y,10,81,14):: NEXT Y :: DI
SPLAY AT(11,10)SIZE(10):"GAM
EQQOVER” :: HI=MAX(HI,SC)!01
8

1010 DISPLAY AT(13,10):”HIGH
“;:: DISPLAY AT(13,15):"Q"&S
TRS (HI)&”Q";:: DISPLAY AT(15
,9)}SIZE(12) : "REPLAJQJQ/QN" !
192

1020 CALL KEY(0,K,S):: IF K=
78 OR K=110 THEN 1100 ELSE I
F K=121 OR K=89 THEN 1030 EL

SE 1020 !035
1030 FOR Y=1 TO 20 :: CALL S
CREEN(RND*13+2):: NEXT Y ::

CALL SCREEN(16):: ME=3 :: SC
,BO,C0=0 :: LE,WA=1 1016
1040 CALL DELSPRITE(ALL):: C
ALL CLEAR :: GOTO 390 !030
1050 CALL DELSPRITE(#1, #8, #9
):: SC=SC+(LE*1000):: FOR Y=
1 TO 21 STEP 2 :: CALL SOUND
(-90,2000,Y):: NEXT Y :: DIS
PLAY AT(1,19):SC !072
1060 DISPLAY AT(2,19):BO ::
FOR Y=1 TO 10 :: CALL HCHAR({
2,21,32,8):: DISPLAY AT{(2,19
):BO :: CALL SOUND(-10, (2000
)+2000,0):: NEXT Y !228
1070 SC=SC+BO :: DISPLAY AT(
1,19):8C :: BO=0 :: DISPLAY
AT(2,19):BO 1092
1080 LE=LE+1 :: WA=WA+1 :: C
ALL DELSPRITE(ALL):: IF WA<5
THEN 410 ELSE WA=1 :: GOTO
840 1023
1090 DISPLAY AT(24,1)BEEP:"Q
QPRESSQSOMETHINGQTOQSTARTQQ”
:: RETURN !015

1100 CALL CLEAR :: END !222

Page 16 « MICROpendium * September/October 1997

THE ART OF ASSEMBLY Part 66

Running in circles

BY BRUCE HARRISON

Some time back, we wrote about drawing a straight line on the computer
screen, and presented a method based on an algorithm developed by a man
named Bresenham. That algorithm uses only very simple integer math to draw
an optimal straight line on our screen.

That article caused some reaction among our readers about who this fellow
Bresenham was and how his method actually worked. We received correspon-
dence from John H. Bull and Phil Van Nordstrand, both of whom started
searching for the mysterious Bresenham. Van Nordstrand found a reference in
Dr. Dobbs’ Journal about a circle-drawing algorithm by the very same
Bresenham. Now that really made us curious. Could this genius Bresenham have
made a “simple math” way of generating circles as well? How could he avoid
using sines or cosines or square roots and still generate a circle? Yes, he could,
and in a way that’s even more mysterious than the straight line.

Van Nordstrand was able to find one of the books referenced in the Dr. Dobbs
source, in the Houston Public Library. He sent along copies of a few pages,
which had the algorithm as implemented in Pascal code. After studying this for a
few minutes, it became evident that this would be easy to translate from Pascal
to TI assembly, and that it would execute fairly fast. The algorithm requires that
some numbers be multiplied, but always by powers of two, and thus simple SLA
instructions would accomplish the needed multiplications. Other than that all the
math is simple integer comparison, addition, and subtraction.

THE ALGORITHM

We enter the algorithm with three numbers. These are the X and Y coordi-
nates of the circle’s center and its radius. The algorithm itself calculates points to
be plotted only for one-eighth of a circle, so we have to devise our own method
of replicating the points for the rest. The algorithm uses a single parameter
which is initially derived from the radius by this formula:

P=3-2*R

For the moment, we’ll ignore the center coordinates. The first point to be
plotted is at the top of the circle, so X is zero and Y is equal to R. (In our
implementation, we add the center coordinates for each point as it gets plotted.)
‘We now plot the point at the top of the circle. After each plotted point, we
examine the parameter P, and adjust its value in one of two ways.

If P<0, we don’t change Y, but adjust the value of P by this formula:

P=P+4*X+6

If P>=0, we calculate the new value of P by the formula:

P=P+4*(X-Y)+10
and then subtract one from Y. Note the formula uses the values of X and Y from

MICROpendium * September/October 1997 « Page 17

THE ART OF ASSEMBLY Part 66

the previous point, so Y is adjusted after calculating the new value of P.

In either case, we increment X after calculating the new value of P. We
continue doing this until X is greater than Y, which indicates that we’ ve finished
one-eighth of a circle. Notice that there are multiplications involved in the
derivation and adjustment of P, but these are by 2 or 4 in all cases, so that in our
assembly version we can accomplish the multiply by shifting a register left by
one or two bits.

OUR ASSEMBLY IMPLEMENTATION

In our implementation, which is in the sidebar at label BCIRC, we've stashed
away the center’s coordinates, so the algorithm only needs to deal in “deltas” for
X and Y. At the outset, we establish four such deltas, called DELXP, DELXM,
DELYP and DELYM. The DELX’s are set to zero, and the DELYP and DELYM
are set to plus and minus the value of the Radius, respectively.

For each pass through the algorithm, then, we plot four points, two in the top
quarter circle and two in the bottom. Thus our circle grows from top and bottom
centers both left and right, so that when we reach the one-eighth circle limit,
we’ve got a half circle, one quarter at the top and one quarter at the bottom. To
complete the circle, we repeat the entire process (at label HALF2) with the roles
of DELX and DELY interchanged, so the quarter circles at either side get drawn.
All of this is being done in bit-map mode, so the circle is a single-pixel thick-
ness. Each point gets plotted by the PLOT subroutine, which dates back to our
tirst column on bit-map operation (Part 42).

As with the Bresenham line algorithm, we can see that this works, and it
makes optimally round circles on our screen, but we don’t know why it works. If
we knew where to reach him, we’d ask Bresenham, but probably wouldn’t
understand his answer. John Bull was able to discover that Bresenham was a
mathematician who worked for IBM. He actually found the original papers
containing derivations and proofs of the algorithm’s effectiveness. As John and [
suspected, these are pretty heavy going.

TODAY’S SIDEBAR

Yes, it’s a complete program in E/A source code, with as much annotation as
we could stand to do. This program uses modified versions of our old standby
SETBM and SETGM subroutines, the old PLOT subroutine, and of course the
BCIRC subroutine, which uses PLOT to place the pixels on the circles. The
action starts with a circle at the center of the screen with radius 10, then keeps
adding ten to the radius until the screen is filled with concentric circles. Note
that the outer ones would run off the screen edges, but we’ve put in a limit check
before actually plotting each point, so the outer circles go up to but not past the
screen edges. In some cases you might want your circles to wrap around from
edge to edge of the screen, but we’ll leave the method for doing so to the serious

student of assembly. (Hint: this is easier than you might think.)
Continued on page 18

Page 18 * MICROpendium ¢ September/October 1997
THE ART OF ASSEMBL

Continued from page 17

Before the mail comes, we'll confess that the code in the sidebar is nowhere
near optimized in any respect. It’s the result of a quick and easy attempt to test
and apply the algorithm, so it may even appear crude and wasteful of memory.
Nonetheless, it shows that this works, and quite well.

The algorithm itself is crash-proof. You can, for example, start with radius=0,
and the screen will just get a single pixel plotted at the center. For those of you
who want to try this, just go into the sidebar and find label CIRCLE. Make that
label say cither CLR RO or LI R0,0, then assemble the result. When run, you'll
see a single dot at the center of the family of concentric circles. That’s the circle
of radius 0. Radius 1 will produce a single pixel open space surrounded by four
black pixels in a diamond pattern.

The sidebar program doesn’t do much. It puts the computer into bit map
mode, then creates a series of concentric circles starting with radius 10 and
growing by 10 on each iteration. Only the first nine will fit completely on the
screen. The rest are shown partially only so far as their pixels fit on the screen.
The code at label CPLM makes sure that we don’t try putting any points off the
edges of the screen.

For the benefit of those who get MICROpendium on disk, we’ve included the
object file SIDE66/O along with this submission. As in the case with
Bresenham’s line drawing algorithm, we've also done a simple Extended
BASIC implementation of the circle, as shown in the sidebar in 28-column
listing. This XB program should also be on your MICROpendium disk as
CIRCXB. This will give you a chance to play around with the algorithm without
having to use assembly code. Since this XB version goes slowly and puts a very
coarse representation on the screen with cursor characters, you’ll be able to see
more clearly what’s happening as the circle gets generated.

The circle algorithm, pretty much as shown here, has been incorporated into
our drawing program, in both the 9-pin and 24-pin versions. As we mentioned
last month, those programs allow circles from the screen to be printed as circles
on paper. If you’re using an old version of our drawing program, now might be a
good time to order an updated copy from our friends in Lima, Ohio.

That’s it for this time. Next time we’ll be discussing the topic of “sound

lists,” and some new ideas and programs to make that concept easier to grasp
and use. See you then.

Sidebar 66

0001 * SIDEBAR 66

0002 * BITMAP CIRCLES

0003 * CODE BY Bruce Harrison
0004 = 20 JUL 1995

0005 * PUBLIC DOMAIN

MICROpendium * September/October 1997 « Page 19

OF ASSEMB

HE

0006 *

0207 * A COMPLETE PROGRAM THAT PUTS THE COMPUTER
0008 * INTO BIT-MAP MODE AND DRAWS A SERIES OF

0009 * CONCENTRIC CIRCLES USING BRESENHAM'S ALGORITHM
0c10 *

0011 DEF START DEFINE ENTRY POINT

0012 REF VWTR, KSCAN, VMBW, VMBR, VSBW, VSBR

0013 START LWPI WS LOAD OUR WORKSPACE

0014 LI RO, >380 POINT AT COLOR TABLE
015 LI R1, SAVCLR AND AT STORAGE SPACE
0016 LI R2,32 32 BYTES TO GET

0017 BLWP @VMBR READ COLOR TABLE INTO STORAGE
0018 MOV @>8370,R0O GET VDP ADDR FROM >8370
0019 LI R1,ANYKEY+1 POINT AT STORAGE BUFFER
0020 LI R2,6 SIX BYTES TO READ

0021 BLWP @VMBR READ THOSE INTO BUFFER
0022 LI RO, >800 POINT AT CHARACTER TABLE
0023 LI R1, CHRTBL AND AT BUFFER STORAGE
0024 LI R2,256*8 256 CHARACTER DEFINITIONS
0025 BLWP @VMBR STASH CHARACTER DEFS
0026 BL @SETBM BIT-MAP MODE

Q0027 CIRCLE LI RO, 10 RADIUS 10

0028 I R8,95 CENTER DOT-ROW

0029 LI R7,127 CENTER DOT-COLUMN

0030 CLR R9 BLACK ON WHITE

0031 MOV R7,@SAVR7 STASH CENTER COLUMN
0032 MOV R8,@SAVRS8 STASH CENTER ROW

0033 CIRCLP MOV RO, @SAVRO STASH RADIUS

0034 BL @BCIRC DRAW A CIRCLE

0035 MOV @SAVRO,RO GET RADIUS BACK

0036 MOV @SAVR7,R7 GET CENTER COL

0037 MOV @SAVRS,R8 GET CENTER ROW

0038 AT RO, 10 ADD 10 TO RADIUS

0039 CI RO, 160 COMPARE TO 160

0040 JLT CIRCLP IF LESS, REPEAT

0041 XEYLOO BLWP @KSCAN SCAN KEYBOARD

0042 LIMI 2 INTS ON

0043 LIMI O INTS OFF

0044 CB @ANYKEY, @>837C KEY PRESSED?

0045 JNE KEYLOO IF NOT, REPEAT

0046 BL @SETGM SET GRAPHICS MODE

0047 EXIT MOV @>8370,R0 GET BACK >8370 ADDRESS
0048 LI R1,ANYKEY+1 POINT AT BUFFER STORAGE
0049 LI R2,6 SIX BYTES

Continued on page 20

Page 20 - MICROpendium * September/October 1997
THE ART OF ASSEMBLY

Continued from page 19

0050 BLWP @VMBW WRITE THOSE BACK TO VDP
0051 LWPI >83EQ LOAD GPL WORKSPACE

0052 B @>6A RETURN TO GPL INTERPRETER
0053 =

0054 ~

0055 * SUBROUTINES FOR HANDLING BIT-MAP

0056 * OPERATIONS AND TRANSITIONS

0057 *

0058 * FOLLOWING SECTION SETS COMPUTER INTO BIT-MAP MODE
0059 *

0060 SETBM LI RO, >1A0 SET TO BLANK

0061 BLWP @VWTR BLANK OUT SCREEN

0062 LI RO,>206 SET TO WRITE VDP REGISTER 2
0063 BLWP @VWTR SIT TO >1800 (SCREEN IMAGE TABLE)
0064 LT RO, >403 SET TO WRITE TO VDP REG. 4

0065 BLWP @QVWTR PDT TO >0000 {(PATTERN DESCRIPTOR
TABLE)

0066 LT RO, >3FF SET TO WRITE TO VDP REG 3

0067 BLWP @VWTR CT TO >2000 (COLOR TABLE)
0068 LI RO, >607 SET TO WRITE VDP REG 6

0069 BLWP @VWTR Sprite descritor table to >3800
0070 LI RO, >570 SET TO WRITE VDP REG 7

0071 BLWP @VWTR Sprite atribute list to >3800
0072 LI RO,>58 INITIALIZE SCREEN IMAGE TABLE (SIT)
(AT

>1800)

0073 MOVB RO, @>8C02 WRITE LOW BYTE VDP ADDRESS

0074 SWPB RO SWAP RO

0075 MOVB RO, @>8C02 WRITE HIGH BYTE VDP ADDRESS
0076 LT RO, 3 THREE TABLES OF 256 BYTES EACH
0077 CLR RI1 START WITH ZERO

0078 SIT MOVB R1,@>8C00 WRITE TO VDP (SELF-INCREMENTING)
0079 AT R1,>100 ADD 1 TO HIGH BYTE R1

0080 JNE SIT IF NOT ZERO, REPEAT

0081 DEC RO ELSE DEC COUNT

0082 JNE SIT IF NOT ZERC, REPEAT

0083 LI RO,>60 INIT COLOR TABLE (CT) AT >2000
0084 MOVB RO, @>8C02 WRITE LOW BYTE OF ADDRESS

0085 SWPB RO SWAP RO

0086 MOVB RO, @>8C02 WRITE HIGH BYTE OF ADDRESS

0087 LI RO, >1800 >1800 BYTES TO WRITE

0088 LI R1,>1F00 COLORS ALL BLACK ON WHITE

0089 cCT MOVB R1,@>8C00 WRITE ONE BYTE

0090 DEC RO DEC COUNT

0091

0092 CPDT
(PDT) AT
>0000
0093

0094

0095

0096

0097

0098 PDT
0099

0100

0101

ZERO

0102

0103

0104

0105

0106 *

0107 * FOLLOWING

0108 =

MICROpendium * September/October 1997 « Page 21

HE ART OF ASSEMBL art 66

JNE CT
LI RO, >40

MOVB RO, @>8C02
SWPB RO

MOVEB RO, @>8C02
LI RO,>1800
CLR R1

MOVB R1,@>8C00
DEC RO

JNE DT

LI RO,2

BLWP @VWTR
LI RO, >1EQ
BLWP @VWTR
RT

0109 SETGM LI RO, >1A0

SCREEN)
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131

BLWP @VWTR

LI RO, >200
BLWP @VWTR

LI RO, >401
BLWP @VWTR

LI RO,>30E
BLWP @VWTR

LI RO, >600
BLWP @VWTR

LI RO, >506
BLWP @VWTR

LI RO, >380
LI R1,SAVCLR
LI R2,32
BLWP @VMBW
LI RO,>800
LI R1,CHRTBL
LI R2,256*8
BLWP @VMBW
LI R2,768
LI R1,>2000
CLR RO

IF NOT ZERO, REPEAT
CLEAR PATTERN DESCRIPTOR TABLE

WRITE LOW BYTE ADDR

SWAP

WRITE HIGH BYTE ADDRESS

>1800 BYTES TO WRITE

ALL ZEROS

WRITE ONE

DEC COUNT

IF NOT ZERO, REPEAT

SET RO TO WRITE 2 TO VDP REGISTER

SET TO M3 MODE (BIT MAP)
UNBLANK
WRITE THAT

SETS COMPUTER BACK TO NORMAL GRAPHICS MCDE

SET TO WRITE VDP REG 1 (BLANK

WRITE

SET TO WRITE VDP REG 2
WRITE

SET TO WRITE VDP REG 4
WRITE

VDP REG 3

WRITE

VDP REG 6

WRITE

VDP REG 5

WRITE

POINT AT COLOR TABLE

AND AT SAVED COLOR DATA

32 BYTES

WRITE THE COLOR TABLE BACK
POINT AT GRAPHICS CHAR TABLE
AND AT STORED CHARACTER DATA
256 CHARACTERS

WRITE CHARACTER DEFS BACK
768 BYTES

SPACE CHAR

ZERO IN RO

Continued on page 22

Page 22 « MICROpendium * September/October 1997 MICROpendium * September/October 1997 + Page 23

THE ART OF ASSEMBLY THE ART OF ASSEMB Part 66
Continued from page 21 0176 BL @CPLM PLOT LEFT POINT

0132 BLWP @VWTR CANCEL BIT Map 0177 MOV @DELYM, R8 GET BOTTOM DELTA Y

0133 MOVE RO,@>837A NO SPRITE MOTION 0178 A @cy,r8 ADD CENTER Y

0134 CLSLOP BLWP @VSBW WRITE A SPACE 0179 BL @CPLM PLOT BOTTOM LEFT

0135 INC RO NEXT ADDR 0180 MOV @DELXP,R7 GET POS DELTA X

0136 DEC R2 DEC COUNT 0181 a @cx,R7 ADD CENTER X

0137 JNE CLSLOP RPT IF NOT 0 0182 BL @CPLM PLOT BOTTOM RIGHT

0138 LI R1,>D000 “DELETE" SPRITE #0 0183 MOV @PARAM, RO GET CURRENT PARAMETER

0139 BLWP @VSBW BY VDP WRITE 0184 JLT ADJP IF LESS THAN ZERO, JUMP

0140 LI RO,>1EQ GRAPHICS MODE 0185 MOV @DELXP,R3 GET POS DELTA X

0141 BLWP @VWTR UNBLANK SCREEN 0186 s @DELYP, R3 SUBTRACT POS DELTA Y

0142 RT RETURN 0187 SLA R3,2 MULTIPLY RESULT BY 4

0143 * 0188 a R3,R0 ADD TO PREVIOUS PARAM

0144 ~* Bresenham's Circle Algorithm 0189 AI RO, 10 THEN ADD 10

0145 * in TI Assembly Language 0190 MOV RO, @PARAM REPLACE PARAMETER WITH P+4 (DELX-

0146 * on entry, R8=Y POSITION OF CENTER DELY) +10

0147 * R7=X POSITION OF CENTER 0191 DEC @DELYP DEC POS DELY

0148 * RO=RADIUS 01382 INC @DELYM INC NEG DELY

0149 * WITH THANKS TO PHIL VAN NORDSTRAND 0193 JMP ADDX THEN JUMP

0150 * 0194 *

0151 BCIRC MOV R11,R13 SAVE RETURN ADDR 0195 * CASE FOR PARAM <0

0152 MOV R8,ecy SAVE CENTER Y 0196 =

0153 MOV R7,@CK SAVE CENTER X 0197 ADJP MOV @DELXP,R3 GET POS DELX

0154 MOV RO,@RADIUS SAVE RADIUS 0198 SLA R3,2 MULTIPLY BY 4

0155 MOV RO, @DELYP MAKE INITIAL TOP DELY=RADIUS 0199 A R3,RO ADD TO PARAM

0156 NEG RO RO=-R0 0200 AT RO,6 ADD 6 TO RESULT

0157 MOV RO, @DELYM MAKE INITIAL BOTTOM DELY=-RADTUS 0201 MOV RO, @PARAM REPLACE PARAM WITH P+4*DELX+6

0158 CLR @DELXP INITIAL DELXPLUS = 0 0202 ADDX INC @DELXP INC POS DELX

0159 CLR GDELXM INITIAL DELXMINUS = 0 0203 DEC @DELXM DEC NEG DELX

0160 SLA RO,1 DOUBLE RO (RO=-2*RADIUS) 0204 JMP PLACE DO ANOTHER SET OF POINTS

0161 AI RO,3 ADD 3 0205 *

0162 MOV RO, @PARAM INITIAL PARAM = 3 - 2*RADTUS 0206 * HALF2 DOES THE QUARTER CIRCLES ON THE SIDES

0163 0207 * BY REPEATING THE ALGORITHM WITH X AND Y INTERCHANGED

0164 * FIRST LOOP DOES QUARTER CIRCLES AT THE 0z08 -

0165 * TOP AND BOTTOM 0209

0166 * 0210 HALF2 MOV @RADIUS,R0O GET BACK RADIUS

0167 PLACE C @DELXP, @DELYP CHECK DELTA X VS DELTA Y 0211 MOV RO, @DELXP MAKE INITIAL POS DELX=RADIUS

0168 JGT HALF2 IF GREATER, WE'RE DONE 0212 NEG RO RO=-RO

0169 MOV @DELYP,R8 GET TOP DELTA Y 0213 MOV RO, @DELXM MAKE INITIAL NEG DELX=-RADIUS

0170 A @cy,Rr8 ADD CENTER Y COORDINATE 0214 CLR @DELYP INITIAL DELYPLUS = 0

0171 MOV @DELXP,R7 GET POS DELTA X 0215 CLR @DELYM INITIAL DELYMINUS = 0

0172 A @Cx,R7 ADD CENTER X COORDINATE 0216 SLA RO, 1 DOUBLE RO (RO=-2*RADTUS)

0173 BL GCPLM PLOT ONE POINT 0217 AT RO,3 ADD 3

0174 MOV @DELXM,R7 GET NEGATIVE DELTA X 0218 MOV RO, @PARAM INITIAL PARAM = 3 - 2*RADIUS

0175 A @cx, R7 ADD CENTER X 0219 PLACE2 C @DELYP, @DELXP CHECK DELTA Y VS DELTA X

Continued on page 24

Page 24 - MICROpendium ¢ September/October 1997 MICROpendium * September/October 1997 « Page 25

THE ART OF ASSEMBL art 66
Continued from page 23 0263 JLT NPLEX IF <0, JUMP

0220 JGT CIRCX IF GREATER, WE'RE DONE 0264 MOV RS,R8 CHECK ROW FOR <0

0221 MOV @DELYP,R8 GET POS DELTA Y 0265 JLT NPLEX IF <0, JUMP

0222 a @cy,Rr8 ADD CENTER Y COORDINATE 0266 cI R7,255 CHECK UPPER COL LIMIT

0223 MOV @DELXP,R7 GET POS DELTA X 0267 JGT NPLEX IF GREATER, JUMP

0224 a @CX,R7 ADD CENTER X COORDINATE 0268 cI R8,191 CHECK UPPER ROW LIMIT

0225 BL @CPLM PLOT UPPER RIGHT 0269 JGT NPLEX IF GREATER, JUMP

0226 MOV @DELYM,RS GET NEGATIVE DELTA Y 0270 JMP PLOT ELSE PLOT THE POINT

0227 A @cY,Rr8 ADD CENTER Y 0271 NPLEX RT RETURN

0228 BL @CPLM PLOT LOWER RIGHT 0272 *

0229 MOV @DELXM, R7 GET LEFT DELTA X 0273 * FOLLOWING WRITES ONE PIXEL TO SCREEN AT LOCATION POINTED BY

0230 A @Cx,R7 ADD CENTER X 0274 * R8 (DOT ROW) AND R7 (DOT COLUMN)

0231 BL @CPLM PLOT LOWER LEFT 0275 *

0232 MOV @DELYP,R8 GET POS DELTA Y 0276 PLOT MOV R7,R3 MOVE DOT COLUMN TO R3

0233 a acy,Rrs ADD CENTER Y 0277 MOV RS,R4 AND DOT ROW TO R4

0234 BL @CPLM PLOT UPPER LEFT 0278 MOV R4,RS DOT ROW ALSO IN RS

0235 MOV @PARAM,RO GET CURRENT PARAMETER 0279 ANDT RS, 7 RS HAS DOT ROW MODULO 8

0236 JLT ADJP2 IF LESS THAN ZERO, JUMP 0280 szc RS,R4 SO DOES R4

0237 MOV @DELYP,R3 GET POS DELTA Y 0281 SLA R4,5 MULTIPLY R4 BY 32

0238 s @DELXP, R3 SUBTRACT POS DELTA X 0282 A RS, R4 ADD RS, SO R4 HAS DR MOD. 8 * 32 +

0239 SLA R3,2 MULTIPLY RESULT BY 4 DR MOD 8

0240 A R3,RO ADD TO PREVIOUS PARAM 0283 MOV R3,RO MOVE DOT COL TO RO

0241 AI RO, 10 THEN ADD 10 0284 ANDI RO,>FFF8 RO HAS DC - DC MOD 8

0242 MOV RO, @PARAM REPLACE PARAMETER WITH P+4 (DELY- 0285 3 RO, R3 R3 HAS DC MOD 8

DELX) +10 0286 A R4, RO ADD R4

0243 DEC @DELXP DEC POS DELX 0287 SWPB RO SWAP BYTES

0244 INC @DELXM INC NEG DELX 0288 MOVE RO, @>8C02 WRITE LOW ADDRESS BYTE

0245 JMP ADDY THEN JUMP 0289 SWPB RO SWAP

ozee 0290 MOVB RO, @>8C02 WRITE HIGH ADDRESS BYTE

0247 * CASE FOR PARAM <0 0291 NOP WASTE TIME

0248 0292 MOVB @>8800,R1 READ THE BYTE

0249 ADJP2 MOV @DELYP,R3 GET POS DELY 0293 SOCB @M{R3),R1 OVERLAY MASK FROM TABLE M

0250 SLA R3,2 MULTIPLY BY 4 0294 ORI RO,>4000 SET THE 4000 BIT IN RO

0251 a R3,RO ADD TO PARAM 0295 SWPB RO SWaP

0252 AL RO.6 ADD 6 TO RESULT 0296 MOVB RO,@>8C02 WRITE LOW BYTE OF ADDRESS

0253 MOV RO, @PARAM REPLACE PARAM WITH P+4*DELY+6 0297 SWPB RO SWAD

0254 aDDY INC @DELYP INC POS DELY 0298 MOVE RO,@>8C02 WRITE HIGH BYTE OF ADDRESS

0255 DEC @DELYM DEC NEG DELY 0299 NOP WASTE TIME

0256 JMP PLACE2 DO ANOTHER SET OF POINTS 0300 MOVB R1,@>8C00 WRITE MODIFIED BYTE BACK TO VDP

0257 CIRCX B *R13 RETURN TO CALLER 03201 MOV R9,R9 IS COLOR TO BE SET?

0258 * 0302 JEQ PLOTX IF NOT, JUMP AHEAD

0259 * FOLLOWING CHECKS SCREEN LIMITS BEFORE 0303 ANDI RO, >3FFF STRIP OFF "4" FROM RO

0260 * ALLOWING A POINT TO BE PLOTTED ON SCREEN 0304 AT RO,>2000 ADD >2000 TO POINT AT COLOR TABLE

0261 = ENTRY

0262 CPLM MOV R7,R7 CHECK COL FOR <0 Continued on page 26

Page 26 » MICROpendium ¢ September/October 1997

THE ART OF ASSEMBLY
0305 BLWP @VSBR
0306 MOVB R1,R2
0307 ANDI R2,>F000
0308 CB R2,R9
0309 JEQ PLOTX
0310 ANDI R1,>0F00
0311 AB R9,R1
0312 BLWP @VSBW
0313 PLOTX RT

0314 ~

0315 *

0316 * DATA SECTION
0317 ~*

0318 Ws BSS >20
0319 M DATA

0320 CX DATA O
0321 cCy DATA 0
0322 RADIUS DATA 0
0323 DELXP DATA 0
0324 DELYP DATA O
0325 DELYM DATA 0
0326 DELXM DATA 0
0327 PARAM DATA 0
0328 SAVRO DATA 0
0329 SAVR7 DATA 0
0330 SAVR8 DATA 0
0331 ANYKEY BYTE >20
0332 BSS 6
0333 SAVCLR BSS 32
0334 CHRTBL BSS 256*8
DEFINITIONS

0335 END

Part 66

Continued from page 25

READ THAT BYTE INTO R1

MOVE THE BYTE TO R2

STRIP ALL BUT LEFT NYBBLE
COMPARE TO LEFT BYTE R9

IF EQUAL, COLOR ALREADY SET
ELSE STRIP OFF LEFT NYBBLE R1
REPLACE WITH LEFT NYBBLE R9
THEN WRITE COLOR BYTE BACK
RETURN

OUR WORKSPACE

>8040,>2010,>0804,>0201 MASK DATA

CENTER X POSITION
CENTER Y POSITION
CIRCLE RADIUS
POSITIVE DELTA
POSITIVE DELTA
NEGATIVE DELTA
NEGATIVE DELTA
PARAMETER
STORAGE FOR RO
STORAGE FOR R7
STORAGE FOR R8
COMPARISON BYTE FOR KEYSTROKE
STORAGE FOR DSR DATA FRCM VDP RAM
STORAGE FOR GRAPHICS COLOR TABLE
STORAGE FOR GRAPHICS CHARACTER

Moo X

Following is an Extended BASIC
program called CIRCXB to illustrate

the circle algorithm:
10 CALL CLEAR

US ":RADIUS
DIUS) ::

S>11 THEN 10
20 CALL CLEAR

=12

INPUT

Cx=14

"RADI
RADIUS=INT (RA
IF RADIUS<0 OR RADIU

CIRCXB
30 P=3-2%RADIUS :: DELYP=RAD
US :: DELYM=-RADIUS :: DELX

P, DELXM=0

40 IF DELXP>DELYP THEN 100
50 DISPLAY AT (CY+DELYP,CX+DE
LXP) :CHR$(30) ; :: DISPLAY AT(
CY+DELYP, CX+DELXM) : CHR$ (30) ;

cy 60 DISPLAY AT (CY+DELYM, CX+DE

LXP):CHR$(30);:: DISPLAY AT(

MICROpendium * September/October 1997 * Page 27
THE ART OF ASSEMBLY Part 66

CY+DELYM, CX+DELXM) : CHRS (30) ; 130 DISPLAY AT (CY+DELYM, CX+D
70 IF P<0 THEN P=P+ (4*DELXP) ELXP) :CHR$ (30); : : DISPLAY AT
+6 :: GOTO 90 (CY+DELYM, CX+DELXM) : CHR$ (30)
80 P=P+(4* (DELXP-DELYP))+10

DELYP=DELYP-1 140 IF P<0 THEN P=P+(4*DELYP

DELYM=DE)+6 GOTO 160

LYM+1 150 P=P+(4* (DELYP-DELXP))+10
90 DELXP=DELXP+1 DELXM=DE DELXP=DELXP-1

LXM-1 GOTO 40 DELXM=DE

100 P=3-2*RADIUS DELXP=RA LXM+1

DIUS :: DELXM=-RADIUS :: DEL 160 DELYP=DELYP+1 DELYM=D
YP, DELYM=0 ELYM-1 :: GOTC 110

170 DISPLAY AT(24,7):"PRESS
R TO REPEAT";

180 CALL KEY(0,K,S):: IF S<1
THEN 180 ELSE IF K=82 OR K=
; 114 THEN 10

T1 RS-232 configuration

BY BOB CARMANY

As with all hardware modifications, continue at your own risk. If you blow
something up, tough! This author doesn't warrant that this modification will
fulfill the needs of your system nor is any liability for this project assumed by
the author.

Tired of the Y-cable hanging out the back of your RS-232 card? Or, do you
have a second parallel printer or additional serial device that you would like to
have attached to your system. Maybe, like me, you have “maxxed out” the
capabilities of a single RS-232 card. You can add a second card to your system
with very little effort — even if you have a TI RS-232 card. All you need isa
second card, a small Phillips screwdriver, a desoldering iron, a soldering iron,
some needle-nosed pliers and a bit of solder.

The TI99/4A is capable of supporting two RS-232 cards at one time. The
primary card occupies CRU >1300 and is designated RS232 and PIO. With a Y-
cable, the serial port can be split into R§232/1 and RS232/2. The secondary RS-
232 card occupies CRU >1500 and is designated RS232/3 and PIO/2. With a Y-
cable, the secondary port can be split into R§232/3 and RS232/4.

If you read the manual that came with the card, it says that the card can be
sent to TI in Lubbock for free, but “PERMANENT MODIFICATION,” as the
RS-232 manual’s addendum states. (Modifications are now made by Cecure
Electronics. — Ed.)

110 IF DELYP>DELXP THEN 170

120 DISPLAY AT (CY+DELYP,CX+D
ELXP) :CHR$ (30) ; : : DISPLAY AT
(CY+DELYP, CX+DELXM) : CHRS (30)

Continued on page 28

Page 28 « MICROpendium ¢ September/October 1997

HARDWARE RS-232

Continued from page 27

The required modification is hardly permanent except for the fact that it does
require that a resistor on the card be unsoldered and relocated to the empty set of
holes immediately below it. First, remove the two spring clips on the top edge of
the clamshell case. Then, take out the four screws at each of the corners. The
clamshell case should come apart letting you access the circuit board. Find the
chip marked U15 and the resistor RS immediately below it. With the desoldering
iron carefully remove the solder holding each of the two legs in place and
remove it with the pliers making careful note which end is which. Move it down
to the next set of holes marked PTHI on the board. Solder the resistor in place
and the modification is complete.

To test your work, put the card in an empty P-Box slot observing all the usual
precautions. You should be able to access the card (the light will come on) as
RS232/3 or PIO/2. The easiest way is to try to send a file from FWEB or TI-
Writer. Since you don't have a device attached to it, the light will come on and
nothing else will happen but you can check the address that way.

Just remember, in the primary mode, the ports are addressed as RS232 if a
single port is used or RS232/1 and RS232/2 if the port is split by use of a Y-
cable. The parallel port is addressed as PIO or PIO/1 (either designation can be
used).

In the secondary mode, the ports are addressed as RS232/3 if a single port is
used or RS232/3 and RS232/4 if a Y-cable is used to split the second port. The
parallel port is addressed as PIO/2.

This procedure can be infinitely reversed although a strapping arrangement
similar to the CorComp card would provide better protection for the circuit
components if frequent changes are anticipated. (Note: A switch would be even
better.)

PR-BASE

Step-by-step approach

to database output

BY MARY PHILLIPS

This article appeared in the March 1996 issue of the Ozark 99er News. — Ed.

In the February newsletter for the Cleveland Area Users Groups, help was
asked for output for PR-Base to 1) print to disk rather than printer and 2) change
from D/V 132 to D/V 80. Here is what I do.

At the first screen:

* DATABASE MANAGER *

PRESS:

| FOR DATABASE CREATION

{

MICROpendium ¢ September/October 1997 « Page 29

PR-BASE

2 DATA MANAGEMENT
3 EXIT

Press 1 and Enter.

Press Enter at Creation title page.
CREATION MENU

PRESS:

1 TO Select Data Disk Drive

2 Format Data Diskette
Design Data Screen
Design Tabular Reports
Design Mailing Labels
Set Printer Codes

Set System Options

Exit

Press 1 and select any drive 1-5. This must be done each time you load the
Creation Menu.

Press 2 to format your data disks only as PR-Base formats in a special way
and a SS disk cataloged with DM 1000 shows DSK2.eeeeeeeeee and Used=0265
Free=8588. That totals 8,853 sectors? A data disk formatted with DM 1000 onto
which headers and records have been copied shows a total of 1,869 sectors?
Either will work with PR-Base but neither will build a directory of files. Disks
formatted with PR-Base will not accept regular programs or text files, but can be
named with DM 1000 so you know what they are.

Press 3 to design or edit your screen, but note that the key repeat function
doesn’t in PR-Base. A chart of key presses for lines and boxes appears at the
bottom of the screen. Use brackets [] (Fctn R and Fetn T) for information to be
in all capital letters, and use braces {} (Fctn F and Fctn G) for mixed characters
and numerals. Press Fctn 6 and enter the database tilename: UG96 and press
Enter, PIO. or DSKn.filename (Enter). (If you want to print this D/V 80 file to
disk, you may remove the program disk and put in a regularly formatted disk.
You cannot print to the data disk.) Print this screen? (Y/N), and press PROCD
(Fctn 6) to write to disk. The number of fields and number of characters is listed.
You may now fill in the blanks in each record.

Press 4 to design or edit 1 to 5 tabular reports based on the information in the
database.

[=REN B e N I S A

DESIGN TABULAR REPORTS

Report Number: (1-5) 2
Number of Columns (80/132) 80
Number of Lines (1-6) 2
Report Title:

ALTERNATE 1996 ROSTER
Continued on page 30

Page 30 - MICROpendium * September/October 1997
PR-BASE

Continued from page 29
Enter Control Code ASCII Values
27 718 6 0 0 0

Three spaces are allowed for each of six ASCII values for printer control
codes. No. 27 (Escape) means Special Character Mode; 78 means Skip perfora-
tion; and 6 means give 6 blank lines before the skip. You must put in one space
before 27 and 78, and two spaces in front of the 6 and each zero or you may
want to put in other codes. You must also press Enter after each number to tab to
the next location. If you have selected 132 characters per line (condensed print),
put No. 15 as the first number.

On the Report Format Design page, PR-Base lists the numerical locations of
the ficlds as you placed them when you designed your data screen.

At the prompt Log Device, if you want to print out the screen, you must enter
PIO or whatever your printer address is. If you’re not going to print the screen,
you may press Enter.

DESIGN TABULAR REPORT ALTERNATE 1996 ROSTER

PR-Base designs a report for you based on the number of lines you told it you
want and asks: Print this Screen? (Y/N) If you select Y, you are asked for Log
Device again and you give it your printer address. When the screen has been
printed or if you pressed N, the cursor jumps to the first screen location number
for editing if you wish to do so. Press PROCD (Fctn 6) when finished or to go
on.

Number of lines used: 3

Number of lines desired 3

In my report that is condensed print, two lines are used, and I type 1 for
Number of lines desired and it works. Two spaces are allowed for the numbers,
and, again, it is necessary to space once before a single digit.

Enter Column Header Line:

This gets tricky because there are only 40 columns on the screen and it
becomes necessary to count over to where you want your header to start if it’s
any place other than column 1. Or, type your header and then insert spaces to
where you want it to start. Press Enter and you’re returned to the menu.

In most places, you can return to the Create Menu by pressing Fctn 9, but
once you’re in the design phase, you have to go on through in order to get out as
Fctn 9 is temporarily disabled.

Press 6 to design or edit mailing labels. Number of lines per label: 6 is what I
use for standard 15/16th-inch address labels.

Report Format Design is the same as we saw when we designed a report.

DESIGN MAILING LABELS

As in Design Tabular Report, PR-Base sets up a label for you in three rows.
You may print the screen if you choose, and you have the opportunity to edit it.
Press PROCD (Fctn 6) when finished.

MICROpendium * September/October 1997 * Page 31

PR-BASE

Number of lines used: 3

Number of lines desired 6

Pressing 6 to Set Printer Codes allows you to enter up to five code sequences
to which you may refer as needed.

Press 7 to Set System Options. (You must do this!)

Database Name: DSK2.96UG

Printer Name: PIO.

Number of Sides on Data Disks: 1

Left label starting column: 02

Right label starting column: 00

When I used two-across labels, the right label starting column was 45, but
now I use single-row labels.

Press 8, Exit the Creation Program.

Reboot PR-Base. Press 2, DATA MANAGEMENT DSK2? (Type the data
disk number and a question mark and the database will be loaded — you don’t
have to remember what you called it.)

After data have been entered in records, press S for Sort in order to print
either a report or labels. The number of total records in the database is shown on
the upper right-hand corner.

To print label information to a D/V 80 disk file, Press O for Output Device.

Data Disk Drive: 2 Press Enter.

Output Device: Change PIO. to DSK1.96UG. Unless you want the file on
your program disk, remove the program disk, but leave in the data disk. I put my
D/V 80 file on my RAMdisk so I can use it with Holiday Tips to put seasonal
graphics on newsletter labels.

Pressing H (Help Screen) in the Command Mode brings up a list of all the
commands and key presses. This is printed out in the docs, and I made a copy
which I keep taped to my PE-box as well as on a flipstrip.

On the program disk is an Extended BASIC utility program, PRBUTIL/BAS
and BRBUTL/DOC which I use each March to make a new data base of paid/
active members. The menu is:

PRESS CHOICE

1 Copy database header

2 Copy a group of records
3 Copy a single record

Search & select records
Sort & rewrite to copy
Configure drives
7 Exit program
A BOOT! menu could be used to put both PRBASE and PRBUTL/BAS on a
menu.

[= NNV I

Page 32 » MICROpendium * September/October 1997

BEGINNING c99 Part 6

Pointers - What are they?

BY VERN JENSEN

Last issue we mentioned that there are two ways of returning values from a
function: the first is by using the return statement, and the second is by using
pointers. But what is a pointer? It is simply a variable that contains the address
of another variable’s location in memory; thus the name “pointer”, since it
“points to” another variable. Pointers must be declared differently than other
variables. To declare a variable as a pointer, you must put an asterisk in front of
the variable when declaring it:
char *myPtr;

The asterisk makes only the variable it is in front of a pointer, so in this
example, the variable intPtr becomes a pointer, while the other variables do not:
int key, *intPtr, status;

When declaring a pointer, you determine what type of variable the pointer
can point to, whether char or int. In the examples above, myPtr can point to
other char variables, and intPtr can point to int variables. To assign the address
of a variable to a pointer, you use the & operator, which gives the address of a
variable:
intPtr = &status;

This will assign the address of the status variable to intPtr. Keep in mind that
this is quite different than assigning the contents of the status variable to intPtr.
If we wanted to do that, we would simply use “intPtr = status”. Once we have
the address of a variable stored in a pointer, we can access that variable through
the pointer by using the dereferencing operator “*”:
myNum = *intPtr; /* “myNum = status” */

This will assign to myNum whatever intPtr pointers to. In this case, it points
to the variable status, so the contents of status will be assigned to myNum.
Things can go in the other direction as well. For instance, this assigns the
contents of myNum to whatever variable intPtr points to:

intPtr = myNum; / “status = myNum” */

Since intPtr points to status, *intPtr can appear anywhere status could, so
statements such as these are possible:

*intPtr = *intPtr * 5; /* Multiply status by 5 */
(*intPtr)++; /* Increment status */

The parentheses are necessary in the last example because without them,
intPtr would be incremented instead of what it points to, because operators like
++ and * associate right to left. And as you might expect, you can assign the
contents of one pointer to another, so if otherP is also an int pointer, this wouid
assign the contents of intPtr to otherP, making otherP point to status as well:

MICROpendium ¢ September/October 1997 ¢ Page 33

L4

BEGINNING c99

otherP = intPtr;
FUNCTIONS AND POINTERS

“So what’s all the fuss about?”, you may wonder. “Sure, pointers are cool, but
how do they help me?” Well for starters, you can pass the address of a variable
to a function. This allows the function to modify the original copy of that
variable. Below is an example of a function that accepts pointers to two vari-
ables and swaps the contents of the original variables. Notice that the function
parameters are declared as pointers:
void Swap(a, b)
int *a, *b;

{
int temp;
temp = *a; /* Save contents of a */
*a = *Db; /* assign contents of b to a */
*b = temp; / *assign old a value to b */
}

To call this function, you would use
int myA, myB;

Swap (&myA, &myB) ;

and the contents of myA and myB would be swapped. Another way to call this
would be like so:

int *aPtr, *bPtr;

aPtr = &myA;
bPtr = &myB;
Swap (aPtr, bPtr);

In both cases, the addresses of myA and myB are passed to the function. The
function can then dereference the pointers to access the variables they are
pointing to, allowing the function to change values it otherwise would be unable
to change. But how about a “real life” example? Here’s something you’ll likely
use every time you write a program:
int char, status;

char = Key (0, &status);

Here the address of the status variable is passed to the Key function (part of
the GRF1 library) so the function can place the current status in that variable. In
addition, this function also makes use of the ability to return a value with the
return statement, and returns the key’s character code that way. Another example
of pointers at work is the Joyst function, which returns x, y, and status values:

Continued on page 34

Page 34 « MICROpendium * September/October 1997
BEGINNING c99

Continued from page 33
int s, %, yi

s = Joyst (0, &x, &y):
POINTERS AND ARRAYS
Pointers and arrays are closely related. In fact, any operation that can be
performed by array subscripting can also be done with pointers. We have seen
that you can assign the address of a variable to a pointer. You can also assign the
address of an array, or any clement of the array, to a pointer. Here’s an example:
char a, *myPtr, array[50];

myPtr = &array[0]; /* myPtr points to array element 0
*/

a = *myPtr; /* a = array[(0] */

myPtr = 7; / array([0] = 7 */

First we assign the address of the first element of the array to the pointer, then
we dereference the pointer by using the “*” (dereferencing) operator, so that
variable a is given the contents of whatever myPtr points to. Finally, we use the
dereferencing operator again to assign 7 to whatever myPtr points to. If we
didn’t use the dereferencing operator, myPtr itself would have 7 assigned to it,
instead of array[0]. If you then tried to use myPtr as a pointer, you would run
into problems, since you would be accessing whatever is kept at memory
location 7, which certainly isn’t the address of one of your variables.

There is another way to get the address of an array, and that is by simply
using the array’s name without the “&” operator and without subscripting. For
instance, this would set myPtr to point to array element 0, just as the code above
does:
myPtr = array;

This is because the name of an array contains the address of the first element
of that array. When you add a subscript, such as “array[5]”, the C compiler uses
the address contained in the array name to access the desired element of the
array. Subscripting is not limited to arrays, however. You can also subscript
pointers:
myPtr[5];

This tells the compiler to access the fifth object after what myPtr points to,
which in this case is array[5]. So by assigning the address of array to myPtr, we
can use myPtr just as if it is the array. This can be very useful when calling
functions, since you can pass the address of your array to the function, and then
that function can access any element of the array. Keep in mind that while you
can get the address of an array using the array’s name, you can’t change it. So
this wouldn’t work:
array = myPtr;

MICROpendium * September/October 1997 « Page 35
BEGINNING c99

However, you can change the value in myPtr. When you add or subtract a
value from a pointer, it changes what the pointer points to. For instance, adding
1 to a pointer makes it point to the very next object in memory. If the pointer is a
Char, the compiler is smart enough to move it up one byte in memory (since a
Char takes up one byte). If the pointer is an Int, then adding one will move it up
two bytes in memory (an Int takes up two bytes). This allows you to increment a
pointer that points to an array, and it will point to the next element, regardless of
whether the array is of type Char or Int.

Here’s an example that sets a to the value contained in array|5]. First we add
5 to myPtr, then we dereference the new address:

a = *(myPtr+5); /* Same as a = array[5] */

Or if you want to change the pointer itself, you could do this:
myPtr = myPtr + 5; /* myPtr now points to element 5
*/

Now accessing myPtr as an array will mean that myPtr[0] is the same as
array[5], myPtr{1] is the same as array[6], etc. This trick could be useful when
passing the address of an array to a function if you wanted the function to think
a particular element of the array was actually the beginning of the array. (You
could pass something like “&array[5]” as the parameter to your function.)

ENOUGH!

Enough confusing nonsense for right now. Here’s an example function that
will help clear things up. It scans an array for the requested ascii value, and
returns the element of the array in which the value was found. For the sake of
simplicity, it is assumed that the value is contained in the array, so the array’s
boundaries will not be exceeded:

ScanArray (myChar, myArray)
char myChar, *myArray;

{

int n;

for (n=0; myArray([n] != myChar; n++)

;
return n;

Here we have an example of an “empty” loop. The for loop executes no
statements, because all the necessary statements are provided in the loop itself.
(Just try to do that in Extended Basic!) The function receives the address of the
array in its pointer (myArray), and uses the pointer as if it were an array. It starts
with element 0 and increments the current element until myChar is found, at
which point the loop ends and the current element is returned to the caller. The

Continued on page 36

Page 36 « MICROpendium * September/October 1997
BEGINNING c99

Continued from page 35
function above could also be written without any array subscripting, although it
might be a little more confusing:
ScanArray (myChar, myArray)
char myChar, *myArray;
{

int n;

for (n=0; *myArray != myChar; n++, myArray++)

i

return n;
}

The key to remember is that the statement “*myArray” gives the value that
myArray points to, and the stalement “myArray++” increments the myArray
pointer so that it points to the next element. Normally you wouldn’t write your
code like this, since it is a little harder to understand, but this type of code does
have its place. To call the ScanArray function, you might use something like
this:
element = ScanArray(‘'E’, “HELLO”);

The expression ‘E’ should be familiar - it is converted by the compiler into
the corresponding ascii value (69). However, the “HELLO” text in quotes is
new. This is called a string constant, meaning it’s a string of char type data that
can’t be changed. When you use a string constant as a parameter (o a function,
the address of the string is passed to the function. The function will then see an
array filled with these values:

[7211691[76](761[7911[0]

As you can see, a string constant is represented in memory with ascii values
for each character in the string, terminated by a 0 to indicate the end of the
string. Each character in a string constant is only one byte (the size of a char),
meaning that if you assign the address of a string constant to a pointer, the
pointer must be a char pointer. You may be wondering by now if C has the
equivalent of XB’s strings. After all, while string constants are nice, you can’t
change them. The answer is that you use arrays to store the contents of your.
strings, and if your array is a char array, you can use a string constant to initial-
ize it, creating an array which contains your string, but can be modified:
char myString[] = “Pretty neat, huh?”;

Notice that I didn’t put a number between the brackets of the array. That’s
because if you leave it out, the size of the array is calculated based on the size of
the string you provide - it will have the same number of elements as the number
of characters in the string plus one, to account for the “end of string” character,
ascii value 0. If you do specify the number of elements in the array when

MICROpendium * September/October 1997 * Page 37
BEGINNING c99

initializing it with a string constant, it must be larger than the number of
characters in your string. Extra elements not in your string will be filled with 0’s.
It is also possible to initialize an array with numbers:

int prime{] = (1,3,5,7,11,13,17};

Keep in mind that since a string constant is not used in this second example,
the array will not be terminated with a zero - that’s something you’ll have to add
if you want it. Array initializers like the ones described above will not work if
the array is a local variable, since local variables come and go as the function is
entered and exited. For the examples above to work, they’d have to be global
arrays (meaning they are defined at the beginning of your program, not in a
function). And unfortunately, you can’t assign a string constant to an array that
has already been created. For example, the following code will not work:
char myArray[5];
myArray (0] = “Hello”; /* Won't work. */

You can, however, assign the address of a string constant to a
char pointer:

char *myPtr;
myPtr = “Hello”;

In this example, myPtr will point to the address of the first character in the
string, allowing you to access that string like a char array. However, you must
remember that the string is still a constant - you can read those characters, but
you can’t change them. On the other hand, you can change the pointer so that it
points to something else, although you would then lose the address of the
“Hello” data.

A SILLY PROGRAM

To conclude our article is a program that demonstrates the topics we’ve just
covered. The program is pretty pointless - it displays text on the screen both
horizontally and vertically, but it does cover a number of important points. Most
importantly, it gives you an example of how to use what we’ve covered in a real
problem. I say this is important because I ran into quite a few compile errors
when I tried to make it. If I had this much trouble making it, I can’t imagine how
much trouble a beginner would have trying to use what we’ve just covered if an
example program wasn’t provided!

This issue we’re going to do something a little different - 'm going to walk
through the source code, explaining each line.
char helloS[] = {72,69,76,76,79,0};

char introS[] = “This is an example of an array con-

taining text.”;

char arrayS[] = “And this is another array”;
Continued on page 38

Page 38 « MICROpendium * September/October 1997

BEGINNING c99

Continued from page 37
char *constP = “This is a pointer toa string con-
stant”;

These lines demonstrate three different ways of saving text. The first uses
numbers to initialize the array. This is a pretty stupid example, because a much
casier way would be to use “helloS[] = “HELLO”. However, I wanted to show
how this is done, since there will be times when you'll want to initialize an array
with numbers. The next two lines initialize two arrays with text, and the last line
creates a char pointer that points to the first character of a string constant.
Remember that this is quite different from an array, since you can’t change the
contents of the string constant.
main()

{

int set, status;

Gril();
Screen(2) ;

/* White on black */
for (set=0; set<l6; set++)
Color(set,16,1);

Next we initialize the GRF1 library, set the screen to black, and the text to
white.

Display(l,14,&helloS[01]);

Display(2,5,introS);

Here we use two different methods of passing the address of the first element
of an array to a function. Remember that “introS” is the same as “&introS[0]”.

VDisplay(5,8,”This is a string constant”);

VDisplay (5,13, arraysS);

VDisplay (5,18, constP);

After displaying our horizontal text, we call VDisplay to display our vertical
text. The first call places a string constant directly into the function call. The
address of the string constant will be passed to the function. (Note: no &
operator is necessary when using string constants.) The next two functions
display the contents of an array, and the contents of the string constant that
constP points to. I know it may seem silly to use all these different methods in
one program, but 1 just wanted to show each technique.

do

Key (0, &status) ;
while (status != 1);
}
After putting the text on the screen, we wait for a new key to be pressed,

MICROpendium * September/October 1997 « Page 39
BEGINNING c99

allowing the user to read everything on the screen before the program quits.
Display(myRow, myCol, string)
int myRow, myCol;
char *string;
{
n, chr;
n = 0;
chr = string([n];

while (chr != 0)

{
HChar (myRow, myCol, chr, 1);
myCol++;
n++;

chr = stringl[n];

/* Bump to next row? */
if (myCol > 28)
{

myCol = 3;

myRow++;

}

Next we come to our Display function, which displays text horizontally
across the screen, much like Extended Basic’s Display At. We could have just
called Locate(myRow,myCol) and then PutS(string), but I wanted to demon-
strate how pointers are used, so I wrote a function that does everything from
scratch. (For more information about the Locate and PutS functions, see the ¢99
manual. These functions are included as part of the CSUP library, and since
CSUP must be included by all ¢99 programs, these functions can be used by any
program.)

One of my first mistakes when making this function was to use char variables
for myRow and myCol. When the program didn’t work correctly, I looked up
the documentation for HChar and found that it expects int variables for the row
and column. This means it was reading two bytes of data, and I was only
providing one. After fixing this, the text appeared in the correct place on the
screen, but was all scrambled. I then discovered that HChar expects an int for
the character it is drawing as well. I fixed this by defining the chr variable as an
int, and copying each value from the char array into chr before passing it to

Continued on page 40

Page 40 » MICROpendium ¢ September/October 1997
BEGINNING c99

Continued from page 39
HChar. This is done by the line “chr = string[n]”, and then chr is passed to
HCHar, rather than string[n]. It is perfectly legal to assign a char to an int or an
int to a char, although if you do the latter, you may get unexpected results if your
int is larger than 255.

VDisplay (startRow, myCol, string)
int startRow, myCol;

char *string;

{

int myRow, chr;

myRow = startRow;
chr = *string;

while (chr != 0}
{
HChar (myRow, myCol, *string, 1);
myRow++;
string++;
chr = *string;

if (myRow > 24)

{
myRow = startRow;
myCol++;

}

}

Finally we come to the VDisplay function. To keep you from getting bored,
we did this differently than the other function. Rather than assigning string{0] to
chr, we assign *string to chr, which does exactly the same thing. (Remember
that *string access whatever string points to, which in this case is the first
element of an array.) Then instead of incrementing n, we increment string, so it
points to the next character in the array. This method may not be as easy to
understand, but it’s more efficient, since the statement “chr = *string” results in
fewer assembly lines than “chr = string[n]". (The latter is actually converted into
“chr = *(string+n)” before it is assembled.)

I hope this isn’t too confusing. If you get stuck, just take a break and then
read this article again, carefully going over anything you don’t understand, and
hopefully it will all fall into place. The concept of pointers may be hard to
understand at first, but they are quite easy to use and very helpful once you

MICROpendium * September/October 1997 * Page 41
BEGINNING c99

know how to use them.

TEXTFUN;C
/**k***********************/
/* TEXTFUN;C. SEP/OCT ‘97 */
/* ISSUE OF MICROPENDIUM */
/* BY VERN JENSEN */

JRR ok k kK ki ok ok ok ok ok ok kK kkk kK Kk kKKK /

#include “DSK2.GRF1;H”

char helloS[] = {72,69,76,76,79,0};

char introS[] = “This is an example of an array con-
taining text.”;

char arrayS[] = “And this is another array”;

char *constP = “This is a pointer toa string con-
stant”;

main()

{

int set, status;

Grfl();
Screen(2) ;

/* White on black */
for (set=0; set<l6; set++)
Color(set,16,1);

Display(1l,14,&helloS{0]);
Display (2,5, introS) ;

VDisplay(5,8,”This is a string constant”);
VDisplay (5,13, arrayS);
VDisplay (5,18, constP);

do

Key (0, &status) ;
while (status != 1);

Continued on page 42

Page 42 * MICROpendium * September/October 1997
BEGINNING c99

Continued from page 41

Display (myRow, myCol, string)
int myRow, myCol;
char *string;
{
int n, chr;
n=20;
chr = stringlnl;

while (chr != 0)

{
HChar (myRow, myCol, chr, 1);
myCol++;
n++;

chr = string(n];

/* Bump to next row? */
if (myCol > 28)
{

myCol = 3;

myRow++;

}

VDisplay(startRow, myCol, string)
int startRow, myCol;

char *string;

{

int myRow, chr;

myRow = startRow;
chr = *string;

while (chr i= 0)

{
HChar (myRow, myCol, *string, 1);
myRow++;

MICROpendium * September/October 1997 » Page 43
BEGINNING c99

string++;
chr = *string;

if (myRow > 24)

{
myRow = startRow;
myCol++;

}

Lima group to host 1998 MUG

The Lima User Group will again sponsor the all TI/Geneve Multi-User
Group (MUG) Conference in 1998. It is likely that this will be the last
MUG Conference the Lima group will be able to host. According to Charles
Good, the Cleveland user groups will probably sponsor the event in 1999.

The event is scheduled for the Ohio State University Lima Campus, May
15 and 16. This is the weekend before Memorial Day weekend.

“I will soon start a web page for MUG 1998,” Good said. The web page
for the 1997 MUG conference (www.bright.net/~cgood/mug1997.html) will
close in October.

COMPETITION COMPUTER (800)471-1600
350 MARCELLA WAY,MILLBRAE CA 94030
CARTRIDGE SALE! $19.95+SHIPPING
SHIPPING: $3 FOR UPTO 6 CARTS
ADD $1 FOR EACH ADDITIONAL CART

EXAMPLE: 7 CARTS=$4 SHIPPING

4A Flyer Escape Barrage Great Word Race
Beyond Parsec Junkman Jr. Black Hole Midnight Mason
Boxer Munchman II Breakout Protyper

Burger Builder Star Runner D Station Strike 3

D Station IT TI Toad

ADDITIONAL CARTRIDGE SPECIALS
Qbert $9.95 Hangman $9.95 Amazeing $4.95 Alpiner $4.95
Car Wars Or Chisholm Trail $2.95 Adventure(disk+cart) $2.95
Hunt The Wumpus $2.95 Munchman Or Ti Invaders $2.95
Tombstone City/The Attack $2.95 Parsec $1.99 TE I $2.95
Over 240 cart titles in stock!! Send your want lists/trades ok!

Page 44 - MICROpendium * September/October 1997

New tricks from PC99, SCSI Cat,
Textloader, Basic Builder,
Extended BASIC V2.5 and V2.6

BY CHARLES GOOD

It is possible to input text from a text file directly into the Extended BASIC
editor, just as if you had typed this text into Extended BASIC. The first three
products I review this month help you do this. Using these products you can edit
XB programs on a 99/4A or Geneve using any version of TI-Writer or you can
edit your XB program on a PC word processor such as those that come with
Windows 95. You can then automatically put the edited XB program text file
source code into XB and have it run just as if you manually typed it in. You can
also create a text batch file to run from command mode that can run a specific
sequence of programs or that will do a CALL FILES(1) and NEW and then run a
large memory image XB program. The possibilities are really interesting. RXB
can do this, as can Super BASIC. However RXB requires a GRAM device or a
Geneve, and the commercial program Super BASIC requires a hardware key that
you plug into the cassette port. The first three software products I am reviewing
this month allow users without special hardware to enter text files into XB.

PC99 (again). by CaDD Electronics

OK, 1 lied. You do need special hardware to run PC99, namely a 486 or
highter PC. But you don’t need any special TI hardware and you don’t need any
special TI software. Running PC99 as a Windows 95 DOS window allows you
to copy and paste any text into the XB or TI BASIC editor running under PC99.
I figured out how to do this after finishing my PC99 review published in the
previous MICROpendium, so [need to discuss PC99 again.

You need to set up a shortcut to PC99 and put this shortcut on your Windows
95 desktop in a specific way. This procedure doesn’t work with Windows 3.1.
Using Windows 95’s My Computer, find PC99L or PC99A on your computer’s
hard drive and, using the mouse, hold down the left button and drag the little
picture onto your desktop. The computer will ask you if you want to setup a
shortcut. Answer “yes.” Now left click once on the desktop shortcut to PC99 and
then press the right mouse button. Select Properties. Select the Program tab and
set “Run” to “minimized,” and put a check mark in the “close on exit” box. Now
select the Screen tab and put a dot in the usage circle next to the word “win-
dow.” Make sure all the boxes on the Screen tab are checked, leave everything
else at the default setting and click on OK. You are now ready to input text into
the BASIC editor running under PC99.

With PC99 you can input only from a text file one line of code at time into

MICROpendium ¢ September/October 1997 » Page 45
MICROREVIEWS

the BASIC editor. For a program listing this means one line number at a time,
not the whole program at once. For command mode this means one command or
series of commands separated by double colons. You input into the 99/4A
BASIC editor running under PC99 whatever you would normally type just
before pressing Enter to have the editor accept your input.

Start the program that has your text file. This can be an email message, a
notepad or wordpad or other word processor text file, an Acrobat reader file such
as CaDD Electronics’ scanned in TI cartridge documentation booklets, or almost
any type of Windows 95-compatible program that contains text. Position the
mouse cursor at the beginning of the text you want to input, press and hold the
left mouse button, drag the mouse to the end of the text, and release the left
mouse button. This will highlight the portion of text you wish to input into
PC99. Move the cursor up to the top of the Windows 95 screen and click on
Edit. Then click on “copy.” Your text fragment is now in the Windows clipboard.

Now start PC99 by clicking on the shortcut. To see PC99 you may need to
click on its name on the taskbar at the bottom of the desktop. Select Extended
BASIC or TT BASIC, and wait until you see the flashing TT cursor in BASIC
command mode at the bottom of your PC99 TI screen. If you have an SVGA
monitor and properly sized windows, you can see both PC99 and your text
application on the monitor screen at the same time.

Move the mouse pointer to the tool bar at the top of the PC99 window and
point to the paste tool. Its looks like a clipboard partially covered with a piece of
paper and will say paste after a couple of seconds when you put the cursor on
the tool. Now for the magic! Press the left mouse button and your text will
appear one letter at a time in PC99’s BASIC command mode screen just as if
you were typing it yourself into BASIC command mode. Proofread this newly
“typed” code to make sure there are no errors (sometimes there are errors). Then
press Enter to have this input accepted by the TI BASIC interpreter. Now move
the mouse cursor to your windows text application, highlight the next line
number of program code or command mode command, and move that into the
PC99 BASIC editor. You can enter an entire BASIC program, one line number
of code at a time, using this method.

PC99 makes a few errors when accepting input via copy and paste, so you
should compare the PC99 BASIC editor screen to your original. Double colons
don’t always come out spaced correctly, and sometimes a character is dropped.
Copy and paste isn’t perfect, but it sure is an easy way to enter a BASIC
program into PC99.

TEXTLOADER by Curtis Alan Provence

You need no special hardware beyond a basic 99/4A disk system to use

Continued on page 46

Page 46 » MICROpendium ¢ September/October 1997

MICROREVIEWS

Continued from page 45
Textloader. It will also work from GPL mode on a Geneve. Essentially, this is a
13-sector XB program with attached assembly code that lets you load in D/V80
text files into XB. Text can be loaded from a disk file, PIO, or RS232. The
needed D/V80 files can be created by TI-Writer with no modification because
Textloader ignores carriage return symbols and the tab record that is written at
the end of most TI-Writer files. Once loaded from XB, perhaps automatically as
DSK1.LOAD, Textloader gives you access to several CALL LINKs either from
within a running program or from XB command mode. These links remain
available even after NEW is used to erase the program in memory.

CALL LINK(“BATCH?”) lets you use a D/V80 file as a command mode batch
file. Each line in the text file is considered a separate batch command, with these
commands being limited to 80 characters. A text batch file example is provided
that does a CALL FILES(1), NEW, and then runs a large memory image XB
program all automatically just by loading a slightly modified version of
Textloader. This application is how I was first introduced to Textloader. A
corespondent sent me a disk full of music programs too large to normally run
out of XB without CALL FILES(1). With Textloader the whole disk plays
automatically directly from DSK1.LOAD.

CALL LINK(*OLD?”) lets you load a program into memory. Although this
can also be done with BATCH, OLD will let you input long XB program line
numbers that exceed 80 characters in length and use several lines of your text
file. This lets you use indentations in your XB text source file to make your XB
code very easy to understand, similar to the indentations used in C source code.
Each element of a complex FOR-NEXT loop or each element of a multi-
command line of XB code separated by double colons can be written on a
separate line and indented in the D/V80 source file. OLD will erase any XB
program already in memory.

CALL LINK(“MERGE") does the same thing as OLD but does not erase XB
line numbers already in memory.

CALL LINK(“HELP”) brings up a help screen. The standard version of
Textloader is set up to automatically bring up the help screen when Textloader
first loads and then returns you to XB command mode. You can bring up the
help screen later at any time with this call link.

This is the best software of this kind for those lacking a GRAM device or a
Geneve. If you have this hardware then you should consider RXB v1003 or
higher, which is an enhanced series of Extended BASIC GRAM files that includes
“load text into XB” capabilities. The only significant limitation to Textloader is
that it is picky about which version of Extended BASIC you are using. It works
with TT Extended BASIC v110 but may not work with enhanced XBs. For
example, it does not work with the Mechatronic Extended BASIC cartridge.

Textloader is feeeware. No donation is required, although the author says he

MICROpendium * September/October 1997 » Page 47
MICROREVIEWS

will accept anything you want to send him. The DS/SD disk comes with
commented source code, on-disk documentation, and a nice generic assembly
loader that will let you boot E/A5 software from Extended BASIC. Send me $1
and I will send you the disk.

BASIC BUILDER by Paolo Bagnaresi

Like Textloader, this software has been around for several years. In fact the
December 1987 v1.1 of Basic Builder probably predates Textloader. Essentially
what you do is load Basic Builder into XB and then from either command mode
or within a program enter CALL LINK(“BUILD”,”DSKx.FILENAME"). Your
XB program written as a D/V80 text file is then loaded into XB and can be
immediately run. Only programs can be loaded, not command mode commands
such as CALL FILES(1).

Like Textloader, your source text file can have one line of XB code spread
over several lines of text with indentations to make the source file easy to
understand. When Basic Builder encounters a number at the beginning of a line
of text that is integer, positive, and less than 32768 it assumes that this is a new
XB program line number. A text line beginning with anything else is added to
the current XB program line number, with one interesting exception.

The exception is text lines beginning with the digit zero. Such lines of text
are ignored and not pumped into the XB editor. You can use these “zero” lines to
heavily comment your XB programs and not have these comments take up
valuable XB memory. Normally, XB comments using REM or ! take up XB
memory.

Basic Builder comes on a DS/SD disk complete with assembly source code,
on-disk documentation, and text source code for an XB version of the game
Frogger. The software is shareware. The author requests $5. You might send the
author a letter of appreciation first to be followed later by cash if your letter is
not returned by the post office because the 1987 Italian address may now be
outdated. If you send me $1, I will mail you the Basic Builder disk.

SCSI CAT by Bruce Harrison

This public domain offering does something no other software will do. From
within the Extended BASIC environment SCSI CAT gives you a catalog of any
directory or subdirectory on any device, including SCSI and HFDC hard drives,
RAMdisks, and floppies.

Lack of a good cataloging program has to date been a major problem for 99/
4A systems that have SCSI hard drives. Run SCSI CAT, enter the device path to
catalog, and see the catalog displayed on screen. If the display is long you can
page up/down through the list of programs. The usual information is provided —

Continued on page 48

Page 48 - MICROpendium * September/October 1997

Continued from page 47
program type, program length in sectors, and protection status. The number of
sectors used and free on your hard drive or floppy is correctly displayed.
Subdirectory names are also indicated. When you exit SCSI CAT on a 99/4A,
you are back to XB command mode. The program also works from XB on a
Geneve but will not return cleanly to XB command mode.

This is not a disk manager. It just displays program and subdirectory names.
You can’t run programs from this display and you can’t automatically bring up the
list of files in a subdirectory. You have to type in the full path of the subdirectory
to do this, but at least SCSI CAT will tell you what path name to type.

If you have a 99/4A system with any type of hard drive, you should have
SCSI CAT. No other software does what SCSI CAT does from within the
Extended BASIC environment.

EXTENDED BASIC V2.5 AND V2.6 by Tony Knerr

And speaking of unique features from within the Extended BASIC environ-
ment, here are the latest enhanced Extended BASIC offerings from Tony Knerr.
Version 2.5 is for those with a 99/4A system that includes a GRAM device.
Version 2.6 is for use on a Geneve and has some nice Geneve-specific features. I
have reviewed Tony’s enhanced Extended BASICs before, and all of the features
of previous versions are included in these updates. What is new is disk format-
ting from XB command mode.

From command mode in XB type CALL SSSD or CALL DSSD or CALL
DSDD to format a disk to the specified density. You can’t use CALL DSDD
with a TI controller. If you have the hardware to format in quad-density, Tony
offers to send you a special version of his Extended BASIC that includes a
CALL DSQD.

In each case you are prompted to put a disk in DSK1 and press Enter. The
disk is then formatted without verification except for sectors 0 and 1. When the
formatting is complete, you are presented with a disk catalog showing the
number of sectors available on your newly formatted disk. You are then returned
to XB command mode.

I know of no other product that formats a disk from within Extended BASIC.
These enhanced Extended BASICs are public domain. Each comes on a DS/SD
disk with plenty of on-disk documentation. I'll send you v2.5 for the 99/4A or
v2.6 for the Geneve for $1 each.

ACCESS

Charles Good (source of all the software reviewed here except PC99)

P.O. Box 647, Venedocia OH 45894; 419-667-3131; email good.6@osu.edu

CaDD Electronics (source for PC99); 45 Centerville Dr.; Salem NH 03079;
603-895-0119; email mjmw @xyvision.com

MICROpendium * September/October 1997 » Page 49

VOT9

Using Windows 95
to put VI9T9 in its place

BY BRIAN TRISTAM WILLIAMS

This article originally appeared in BugBytes, the newsletter of the Tl
Brisbane User Group (TIBUG). The author can be reached via email at
POLAR@globaLco.za — Ed.

WIN95:°MS-DOS PROMPT’ CONTEXT-MENU ADDITION

You load up Windows Explorer, and look at your V9T9 directory. You have
the directory visible in Explorer, but you’d like to be there to do something in
DOS, like run one of the PC programs in the UTILS directory. The default way
would be to click on Start -> Programs -> MS-DOS prompt.

You’d then be thrown into Windows’ default directory. To get to V9T9, you’d
have to remember where V9T9 was (on your drive), then type something like:
CD \APPS\UTILS\VIT to get there.

OK, easy enough, but this can get really tedious to do over and over again.
The solution: How would you like to be able to right-click on any directory in
Windows Explorer’s lefthand-pane, then click on MS-DOS prompt, and be
dropped off in the directory of your choice?

Here’s how to do it:

In Windows Explorer, go to the menu and click on *View’ -> ‘Options.” Then
go to the File Types tab.

Scroll down to the registered File Type named ‘Folder,’” click on it, then click
the “Edit’ button.

You will see the ‘Edit File Type’ dialogue. Click on the ‘New’ button. The
‘New Action’ dialogue pops up.

In the ‘Action’ field, enter “MS-DOS Prompt.”

In the ‘Application’ field, you type “C:\Win95\command.com” (Note,
however, that Win95 is the name of MY Windows 95 directory — you will need
to replace this with your own directory’s name — usually “WINDOWS”)

Click on the ‘OK’ button to close the ‘New Action’ dialogue, close the ‘Edit
File Type’ dialogue using the ‘Close’ button, then close the ‘Options’ dialogue,
using the ‘Close’ button.

From now on, you should be able to go to the directory of your choice by
right clicking on it (in Windows Explorer’s left-panel) and clicking on “MS-
DOS Prompt’.

You can switch this prompt, then start up Notepad, load up the file, read it,
then close Notepad and go back and delete the file. And all you wanted to do
was take a look at it! Wouldn’t it be nice if you could look at such a file with
Notepad, with the correct formatting, after two double-clicks?

Continued on page 50

Page 50 « MICROpendium * September/October 1997

Continued from page 49

First, you need to create a file named DVSOREAD.BAT, which looks like this:

C:A\APPS\UTILS\VITOtils\ti2txt %1

NOTEPAD %1.txt

erase % l.txt

Make the following change: replace “CAAPPS\UTILS\V9T9” with the name
of your V9T9 directory. Create this file by starting Notepad, and typing it in.
After you’ve typed in this program, save it to a directory which is in your MS-
DOS PATH, such as “CAWINDOWS\COMMAND?”. Do this by going to
Notepad’s menu, then clicking on “File’ -> ‘Save As...”, and typing
‘CAWINMWS\COMMMD\DV80R @ BAT", then closing Notepad.

OK, you’ve done that, but how do you get it to run when you choose the D/
V80 file you need to view?

Well, first you need to make DVSOREAD.BAT appear in your ‘Open With’
dialogue box. This is the dialogue that pops up when, in Windows Explorer, you
double-click on a file with an extension that is not associated with any applica-
tion.

In order to do this, open Notepad, type in a word or two, then save the file as
“C:\LY This will put the file 1.!” in your root directory, for now.

Close Notepad, then go into Windows Explorer, and double-click on this file.

You will get the ‘Open With’ dialogue, most likely. Click the “Other’ button,
then find the directory of DVBOREAD.BAT by double clicking on “Windows,”
then “Command,” then “dv80read.bat”.

This will select this file and close the ‘Open With’ file-selection dialogue
box. Close the ‘Open With’ dialogue box by clicking the ‘Close’ button. You will
then get an error message. Click the ‘No’ button, and close Notepad.

You can now delete the “1.1” file — it is no longer necessary.

Now you can go to a VIT9 FIAD directory such as DISK, double-click on a
known D/V80 file, and it should pop up in Notepad. You can then save this file
anywhere else, in DOS text file forrnat.

There is one instance when this method won’t work. If your D/V80 file has
any characters which DOS wouldn’t accept, such as a file named “FW/ DOCS”,

which could not contain the */” character. VOT9 will change the ‘/’ character to
one the PC would accept, and this would confuse this little batch file. Also, if
your filename is longer than eight characters, it won’t work.

Chicago users slate 15th annual Faire
The 15th Annual Chicato TI International World Faire is scheduled from 9:30
a.m. to 4 p.m. Nov. 8 in the Evanston Public Library, at the corner of Church and

Orrington streets in Evanston, Tilinois.
The event is sponsored by the Chicago TI Users Group. For further informa-

tion, contact Hal Shanafield, (847) 864-8644.

MICROpendium * September/October 1997 * Page 51

FEST WEST ’98

Fest West lines up hotels,
Tl facility

Plans for Fest West "98 in Lubbock
are being finalized, according to event
organizer Tom Wills of the Southwest
99ers User Group.

Wills says “at this time we do need
to hear from vendors who are inter-
ested in setting up a booth. The room
for the vendor activities is easily
accessible for vendors to move
equipment in and out of.”

The vendor area will be open from
1 to 6 p.m. Feb. 14.

“Hopefully a shorter time period
will be more productive and buyers
won’t need to be wandering around all
day waiting until the end of the day
for expected bargains,” Wills said.

So far, two vendors have said they
will attend.

TWO SITES

The fair will be held at two sites,
one of them a TI production facility
and the other a hotel. The TI facility
was at one time used to produce the
TI home computer.

Those who attend the activities at
the TI facility, which will be offered at
no charge, will have to be abide by a
number of restrictions, including:

« No sales of any sort on TI
grounds.

« Because of security policies for
this type of facility, attendees will not
be able to come and go at will.
Everyone will have to register in the
TI lobby between 8 and 8:30 a.m. An
information card and a liability waiver
will have to be filled out for each
visitor. The activities will end at noon.

» No cameras will be allowed
during any of the activities. Arrange-
ments are being made to take “offi-
cial” pictures which can be made
available to those in attendence.

* Except for tours of the facility,
those attending will have to remain in
the area designated for the Fest West
activities.

SCHEDULE OF EVENTS

The activities at the TI production
facility will be conducted in the
morning. These activities are expected
to include tours, speakers, and a mini-
museum. Speakers will include TI
employees who were instrumental in
the development of the TI99/4A. T1
officials are contacting members of
the development team to have them
present at the activities.

From 1 to 6 p.m., the vendor
portion of Fest West will take place at
the Sheraton Four Points Hotel. As
part of FW98, there will also be a
hospitality room set up in the hotel
which will be open from 1 to 10 p.m.

DRIVING DISTANCES

Some distances to Lubbock

include:

City Distance in miles
Tucson, AZ....

Chicago, IL ... e 1172
Atlanta, GA .. 1309

Los Angeles, CA .. 1168
Denver, CO 500
Cleveland, OH ... 1378
Seattle, WA ... 1767

Fest West will have two official

Continued on page 52

Continued from page 51

hotels. The first is the Sheraton Four
Points Hotel. There is a block of 100
rooms set aside for Fest West attend-
ees. Prices are as follows:

Single/double room (1 or 2 people)
$54 with an additional $10 for each
extra person up to 4 persons per room.
Taxes are extra. The rooms will be set
aside for Fest West until 30 days
before the event. Mention Texas
Instruments Computer Fair for the
special rates when making reserva-
tions.

The second hotel is the Koko Inn.
A block of 100 rooms has been set
aside, with another possible 100
rooms at the Koko Inn’s sister hotel,
the Villa Inn. Each room has either
one king-sized bed or two queen-sized
beds. The rates for the Koko Inn are
$44 a night for up to four people per
room. The block of rooms will be held
until two weeks before Fest West. Call
800-448-3525 or 806-747-3525 to

Page 52 « MICROpendium « September/October 1997

make reservations. Mention Fest West
‘98 for the special rates when making
reservations.

For tourism information, call the
Convention and Tourism Bureau of
Lubbock at 1-800-692-4035.

TRANSPORTATION

Lubbock International Airport is
served by five major airlines —
American Eagle, ASA The Delta
Connection, Continental, Southwest,
and United Express.

Lubbock has 12 rental car compa-
nies to accommodate visitors. Rental
agencies at the airport include:
Advantage, Avis, Hertz, and National.
Off-site rental agencies include:
Advantage, Agency, Budget, Dis-
count, Enterprise, Sears, Snappy,
Thrifty, and Trusty.

Agencies offering van rental are
Advantage, Discount, Thrifty, and
Trusty.

All major convention hotels offer
free airport shuttle service.

Hidden powers
of MIDI Master

There are hidden powers in MIDI-
Master that we’ve just discovered. It
started with a question from Richard
Bell, who was testing our new
version 2.5Z. He has a very new and
advanced Casio keyboard, and
discovered from its manual that it will
accept and play MIDI notes a full
octave below its own keys. The
lowest key on the keyboard
carresponds with the note 0C in
MIDI-Master’s SNF notation. He

asked whether there could be a way to
send that lower octave from MIDI-
Master. There is!

According to its docs, MIDI-
Master handles notes from 0C
through 5C. By examining the source
code in its compiler, we learned that it
doesn’t check the octave character for
numeric values. It simply takes the
ASCII value and performs integer
math operations on it. It looked as
though if we used the next lower
ASCII character (/) in place of the
zero, that we could compile a whole
octave below 0C. This works!

MICROpendium ¢ September/October 1997 « Page 53

USER NOTES

‘We ran a test with our Yamaha
PSR 300, which also can play MIDI
notes a full octave below its keys. We
were able to play a scale starting with
/C and running through 0C via MIDI-
Master. We also discovered that we
could put the octave up through 7C
and our Yamaha would play that, too.

Not all keyboards have this
capability, so it’s best to be a bit
careful using it. Our older Casio CT-
650 will transpose any notes below its
key range up into the range of its
keys. This is probably true for other
older model keyboards, but the newer

Continued on page 54

April 1988 and present ..
a CHECKSUM and CHECK

MlCROpendmm Disks forSale
i D Series 1997 1998 (May/]une 1996 Jan/Feb. 1997 6 dlsk mailed
bimonthly)$25.00
&) Series 1996-1997 (Manyuna 1996~Jan/Feh 1997 (disks) ... $25.00
{0 Series 1995-1996 (April 1995- Mar. 1996, 6 disks) 5.00
{1 Series 1994-1995 (April 1994-Mar 1994, 6 disks) ... $25.00
L Series 1993-1994 (April 1993-Mar 1994, 6 disks) $25.00
0 Series 1992-1993 (Apr 1992-Mar 1993, 6 disks) e $25.00
 Series 1991-1992 (Apr 1991-Mar 1992, 6 disks) $25.00
L) Series 1990-1991 (Apr 1990-Mar 1991, 6 disks) $25.00
) Series 1989-1990 (Apr 1989-Mar 1991, 6 disks) ... $25.00
Q) Series 1988-1989 (Apr 1988-Mar 1989, 6 disks) 5.00
L) 110 Subprograms (Jer‘ry Ster's collection of 110 XB
. subprograms, 1 disk) . ..$6.00
¢ LI TL-Forth (2 disks, req 321(E[A no docsj L $6.00
0 TL-Forth Docs (2 disks, D/VSO files) $6.00
121988 updates of TE erter, Mulnplan & SBUG (2 ,uks) . $6.00

. 1) Disk of programs from y one issie of MIC Opendium between

Exp Date

USER NOTES

Continued from page 53
ones can range all the way from one
octave below OC up through 7C when
played by MIDI-Master.

PC-Tl file transfers

The following was written by
Bruce Rodenkirch and appeared in
the newsletter of the Cleveland Area
TI99/4A User Groups.

1 got an old PC (for free at a
Hamfest) with an 8088 CPU and have
been spending some time with it.
bought a 20-megabyte hard drive and,
after a lot of trial and error and help
from my buddies, got it formatted and
running. This seemed like an idea
place to store the many files I have
been accumulating. It isn’t too hard to
do, I discovered.

I have it connected to my TI
(Geneve) through the serial port and
have been experimenting with
tranferring programs back and forth. T
use a “straight through” cable from
the RS-232 card out the front of the
Peripheral Expansion Box, which just
acts as an extension cord.

Then I bought two DB-25 sockets,
one male and one female, and
soldered short wires, about four
inches, between them. These are also
connected straight through with short
(one-quarter inch) gaps in the
insulation, staggered to minimize the
chance of a short circuit. You don’t
need to use 25 wires, only about 10 or
so to cover the pins you need to
connect the pins you plan to use.

1 then plug my modem cable to
this and, since it is wired for T1
parallel use, the modem thinks it is

Page 54 « MICROpendium * September/October 1997

connected directly to the RS-232
card.

This is handy if you need to
experiment with changes in the RS-
232-to-modem wiring, such as with
Term 80 or the Port terminal program
for the Geneve. It also makes it easy
to hook up a clone to the TI with a
“Y” cable, which can be easily
constructed. Get another DB-25 plug
of the gender needed for the clone
cable. Connect pins 1, 2, and 3 to the
same wires in the short cord de-
scribed above. Number 1 is ground,
and 2 and 3 are receive and transmit.
Because the the clone and TI pins 2
and 3 are the opposite, the TI will
transmit to the receive pin of the
clone.

Using appropriate terminal
programs for the two computers
(Telco and Procomm, for example),
ASCII text files and XMODEM file
transfers can be made. Also, whatever
is typed on one screen will appear on
the other screen. Reversing pins 2 and
3 to the clone will send the down-
loaded info from the modem to both
computers.

Speeding up BASIC

The following was written by John
Hale and has appeared in several user
group newsletters.

Remember, BASIC reads every
program line and parts of lines in its
path. Unnecesasry comments take
time to read.

« If you must have your program
description first in your program,
make your first line read GOTO
XXX. BASIC will then skip these

MICROiendium * Seitember/October 1997 « Paie 55

lines (REMs) while executing and go

to the line referenced in GOTO XXX.

* REM may be used after a line
branch has been placed.-But it won’t
be seen by BASIC.

* Use OPTION 1 if you have no
use for a zero being scanned on each
reading of an array.

* Do not use DEFine. Functions
are the worse time users than
GOSUBs. Use DEFine only when
you have a very complicated opera-
tion requiring repeated use with a
variety of variables.

* Avoid using GOSUB or GOTO
to reach short routines. Replace them
with in-line solutions, even if they are
needed again elsewhere in the

program.

* Never use an array variable if
you can use a simple variable instead.

* Use one or two character
variables. Habitually use the same
variables for all loops.

* Throw away all variables which
are used only once. Replace them
with a transient variable that will
handle all of the single use variables.

* Do not use a variable when not
absolutely needed. Use a literal
constant instead. Variables are kept in
a table and require time to locate.

* Do not write loops for short,
repetitive sequences.

* Keep your programs linear.

* Do not use LET.

_ ,

Q1 Back Issues,$3.50 each to March 1996, later
$6 each. List issues on separate sheet.

No price breaks on sets of back issues. Free ship-
ping USA. Add $1, single issues to Canada/
Mexico. Other foreign shipping 75 cents single
issue surface, $2.80 airmail. Write for foreign
shipping on multiple copies.

OUT OF STOCK: V14#1-2; V2#1

U MICROpendium Index (2 SSSD disks, 1984-
1992), XBASIC required............................ $6
1 MICROpendium Index II (9 SSSD disks,
1984-1992), XB req. ..c...coveerrmmsrevrererrnnns $30
U MICROpendium Index II with MICROdex
99 (11 SSSD disks), XB required $35
Q MICROdex 99 (for use with MP Index II, 2
SSSD disks), XB required ...
U Index IT annual disks ordered separately (1
disk per year, 1984-1992); each $6
I MICROdex 99, by Bill Gaskill, is a collection of
programs that allow users of MP Index II to modify
their index entries, as well as add entries. MICROdex
99 supports many other functions, including file
merging, deletion of purged records, record count-

ing and file browsing.
GENEVE DISKS (SSSD unless specified)
LMDOS 2.21 (req. DSSD or larger (for floppy

& hard drive systems
QGPLLS....rvvennens $4
{3 Myarc Disk Manager 1.50 $4
2 Myarc BASIC 3.0.

QOMY-Word V1.21 ...
 Menu 80 (specify floppy or HD version; in-
cludes SETCOLR, SHOW-COLOR, FIND,
XUTILS, REMINDoccccoosccroererrrn. $4

GENEVE PUBLIC DOMAIN DISKS
These disks consists of public domain programs avail-
able from bulletin boards. If ordering DSDD, specify
whether Myarc or CorComp.

SSSD DSSD DSDD

QSeries I $9 $7 $5
Qi Series2 $9 $7 $5
O Series3 $9 $7 $5
QSeries4 $9 $7 85
QSeries5 $9 $7 $5
O Series6 $9 $7 $5

