Covering the TI99/4A and the Myarc 9640

MICROpendium

VYolume 1! Number 8 September 1994 $3.50

e
A\ o
L \"p) \

Experimenting with sound

page 6

PLUS:

Databases with Cardfile

Assembly mysteries unraveled
Reviews of XB Compiler, Drawing
Program, Video Titler, Font Converter,
| Turnfont, and CALL LINKabIe XB |
4 Enhancements .

Page2 MICROpendium/September 1994

LONTENTS

MICROpendium

MICROpendium (ISSN
10432299) is published monthly
for $35 per year by Burns-Koloen
Communications Inc., 502 Wind-
sor Rd., Round Rock, TX 78664-
7639. Second-class postage paid
at Round Rock, Texas. POSTMAS-
TER: Send address changes to MI-
CROpendium, P.O. Box 1343, Round
Rock, TX 78680-1343.

No information published in the pages of
MICROpendium may be used without per-
mission of the publisher, Burns-Koloen
Communications Inc. Only computer user
groups that have exchange agreements with
MICROpendium may excerpt articles ap-
pearing in MICROpendium without prior
approval.

While all efforts are directed at providing
factual and true information in published ar-
ticles, the publisher cannot accept responsi-
bility for errors that appear in advertising or
text appearing in MICROpendium. The in-
clusion of brand names in text does not con-
stitute an endorsement of any product by the
publisher. Statements published by MI-
CROpendium which reflect erroneously on
individuals, products or companies will be
corrected upon contacting the publisher.

Unless the author specifies, letters will be
treated as unconditionally assigned for pub-
lication, copyright purposes and use in any
other publication or brochure and are sub-
Ject to MICROpendium's unrestricted right
to edit and comment.

Display advertising deadlines and rates
are available upon request.

All correspondence should be mailed to
MICROpendium at P.O. Box 1343, Round
Rock, TX 78680. We cannot take responsi-
bility for unsolicited manuscripts but will
give consideration to anything sent to the
above address. Manuscripts will be returned
only if a self-addressed stamped envelope is
included.

Foreign subscriptions are $40.25 (Mexico);
$42.50 (Canada); $40.00, surface mail to oth-
er countries; $52 airmail to other countries.

All editions of MICROpendium are
mailed from the Round Rock (Texas) Post
Office.

Mailing address: P.O. Box 1343, Round
Rock, TX 78680.)

Telephone: (512) 255-1512

Fax: (512) 255-1557

CompuServe: 75156,3270

Delphi TINET: MICROpendium

GEnie: J.Koloen

Internet E-mail: jkoloen@io.com

John Koloen.......eennisecnnnnnens Publisher
Laura Burns Editor

Extended BASIC

CC-40

Cecure takes over official repair SErvice............ooeveveveveveonnn Page 9

The Art of Assembly

More mysteries unraveled, and how the compiler reports by line
DUIMDETS ..ottt ee e eeeseeseses e es s s Page 10

Reviews

MICRO-Reviews: Bruce Harrison’s XB Compiler, Drawing Pro-
gram, Video Titler, Font Converter, Turnfont, and CALL Linkable

XB Enhancements............ueuveveerveueneenneieeeeeeeereesenseses oo, Page 24
User Notes

NEW without CLEARIng the screen, TI-Base date handling, and a

Soundmaker Program............cc.oveeeveeevereeveeeeeeesseressesssssson Page 26
CIGSSiﬁed .. Page 31

Departments

Bugs and BytesPage 26 Feedback ... Page 5
Comments............ccoeremnne.. Page 4 Reader to Reader
Fairs....coovererveereeerverececee. Page 19

*READ THIS
Here are some tips to help you when entering programs from MICROpendium:
1. Most BASIC and Extended BASIC programs afe run through Checksum, which
places the numbers that follow exclamation points at the end of each program line. Do
not enter these numbers or exclamation points. Checksum is available on disk from
MICROpendium for $4.
2. Long Extended BASIC lines are entered by inputting until the screen stops accept-
ing characters, pressing Enter, pressing FCTN REDO, cursoring to the end of the line
and continuing input.

MICROpendium/September 1994 Page 3

ANNOUNCING NEW LOW PRICES ON

TEX-COMP HAS SLASHED PRICES ON THE BIGGEST & BEST COLLECTION OF FREEWARE FOR THE
99/4A. NOW ONLY $2.95 PER DISK WITH A 5 DISK MINIMUM. CHOOSE FROM HUNDREDS OF GREAT
PROGRAMS. NO EXTRA CHARGE ON PROGRAMS THAT REQUIRE MORE THAN ONE DISK SIDE.
ALL PROGRAMS HAVE BEEN TESTED AND ALMOST ALL HAVE BEEN PROVIDED WITH EXBASIC
AUTOLOAD. CHOOSE FROM THE BEST IN GAMES, UTILITIES, GRAPHICS, HOME & BUSINESS AND
DISK BACKUPS OF DOZENS OF YOUR FAVORITE MODULES THAT ARE NOW OUT OF PRODUCTION.
GAMES » BUSINESS * GRAPHICS * WORD PROCESSING 'U;I’ILITIES *DATABASE * MUSIC *COMMUNICATIONS * HOME
GRAPRICS, WUSIC & ANTMATION PUBINESS, ACCOUNTING, ANES
i1 THE SINGING TI VOL. 1 (S)(2) WORD PROCESSING, DATA BASE 42 WM. Of FORTUNE, BLKJACK. POKER yWrOCOM ADVNTURE BACKUTS
74 PRINTART (2)(P) NOME OTPICE § HOME ” LOTTO PICKER 7163 ZORK I
#5A MUSIC/GRAPHICS #10 GOTHIC PRINTOUT (P) 713 STRIP FOKER (PG) #154 ZORK II
#6 EXBASIC MUSIC (2) 719 TI WRITER/MULTIPLAN UPGRACE " ALRATED MOUELTY GAHE 7155 ZORK 111
#7 SPACE SHUTTLE MUSIC/GRAFHICS #20 ACCOTWTS3 RECEIVABLE (2) e CHECKERS & BACKGAMMON 7166 HITCHIKER'S GUIDE
#9 MONA LISA FRINTOUT (P) 721 DATA BASE DEMO It SOLTIAIRE € ScmasmLp 7167 WITNESS
#11 ANIMATED XMAS (WOODSTOCK) £23 WILL VRITER T orne oL 7168 ENCHANTER
714 FIGURE STUDIFS (T)(FG) 729 LUABEL MAKER I (F) 733 GREAT T1 GAMBS VOL 7169 INFIDEL
732 EXBASIC XMAS MUSIC (2) 736 STRICTLY BUSIMESS (2) " grex oL 2 v 7170 PLANETFALL
#41 VIDEO GPAFHS (M) #56 SFTREAD SHEET ; 3 OF BRITAIN GAMES v°'~ 1 #171 SORCERER
752 ANIMATION 99° (2) #58 PR BASE (database) 45 BEST OF BRITIAN GAMES VOL 2 7172 DEADLINE
769 PLAYPR FIANO/REYBOARD ANALYSIS 759 GRAFH MAKER (LEGEND OF CARFAX ABBY GPAFWIC- £173 CUTTHROATS
#93 XBGB GIRLIE CALENDAR (1) (F) 774 LABEL MAKER II (F) INTERACTIVE ADVENTURE) 7174 SUSPENDED
#103 SORGAN TNE TI ORGAN #77 MICROdex 99 (database) 746 SUFER TRIVIA 99 7175 STARCPOSS
7107 STARTREK MUSIC ALBUM 731 HOME ACCOUNTING SYSTEM 747 INFOCOM RAPID LOADER ’
7111 POP MUSIC & GRAPRICS #9) HOME APPLICATION PROGRAMS (2) 743 GHOSTMAN (ftom U.K.) 7176 AMAZING (M)
7114 TANORAMA #90 JET CHECKBOOK MANAGER #49 DEMON DESTROYER (trom FRANCE) #178 DEMON DESTROYER (M)
#115 GRAPHICS DESIGN SYSTEM 792 HOUSEHOLD INVENTORY 750 OH MMONY1 (RIT from GERMAMY) 7179 POPEYE (M)
7120 BITMAC (2)(F) 7109 TI WRITER MINI MANUAL #51 BERLIN WALL (from CANADA) 7180 QUEBERT (M)
7230 TAE SINGING TI VOL. 2 (S)(2) #3112 INVOICE PACK #50 FREDDY (HIT from GERMANY) 7181 nm:gn B;:;J (1)
#231 THE SINGING TI VOL. 3 (S)(2) #11) LABEL MAKER Il 751 THE MINE (from GERMANY) “:i g;—'\k~ uiy; "
£246 THE SINGING TI VOL. 4 (S)(2) #129 CASH DRAWER (point of sale} #53 ASTROBLITZ & MAZOG 11 ACE MARER (1)
#313 1-D WORLD {(CAD for the TI) 7130 THE ORGANIZER 154 MAJOR TNM & SPACE STATICN FHETA :15; IORER PLY (%)
COMPUTER UTILITIES, PRIFTEZR #147 CALENDAR-NOTEPAD #55 PERFECT PUSH (NIT) 18 T BANDITE (M)
DTILITIZS § PPOGPANNING LANGUAGES /177 HOUSEROLD BUDGET MANAGEMENT (M) /$3 CHESS (SARGOM) 1186 SPAC "
g #70 T1 RUNNER 11 (HIT) 7188 KILLER CATERPILLER (M)
#3 OUMPIT (E/3) A0 MM AT PR aeE 432 CEBERUS (WIT SFACE GAME 7170 BLACK HOLE & SFACEZ AGRESS. (M)
715 STAR/EPSON FRINTER DFMO (P)(2) f221 PERSOMAL REAL ESTATE (M) 1y erer tomny TheE o) ot T TI GAMES VoL 8
U6 SIDEWAYS FRINTOUT (P)(2) 1249 MATHAKIR #92 CPOSSWORD (PUZZIES) 7192 OWEAT T1 GAMES VOL 9
'8 TI DIAGNOSTIC (MM)(2) 7252 99 VRITER 11 (TI WRITER)(F) £34 GALACTIC BATTLE & SPY ADVEW 7193 SPY’S DEMISE (RIT) (M)
48 LOADERS & CATALOGERS 7253 AMA MAILING LIST #88 AUSSIE GAME COLLECTION V(:‘L i 1:94 ST. NICK: (M)
#)0 HOUSEMOLD BUDGET FRINTOUT (P) #255 TRAK-A-CIECK B AeTIrie o onoe TwoobstTock 11y e oo
/35 PROGRAMMING AIDS & UTILITIES I #2357 DAILY DIARY A s vor 3 g 138 oo TSt (HIT)(M) -
;;; 33%"3;\&% (SUELL DTILITY) ;;gnugif;}‘?gm £38 DAYS/POORS OF EDEN (RIBLE ADV) (AM) 7198 TI mvmr,g:‘/zro:nsmnt CITY (M)
755 SCREEN DUMF (¥) 1310 SELP mELP TAX cUT 1130 ASEAULT THE CITY.(T0) 139 mowrem)
#62 DISK MANAGER 11 (M) TELRCO CATIONS (HODEH) #102 COLOSSAL CAVES (ADVENTURF) £206 TREASURE ISLAND (M)
#75 DISK CATALOGER #57 TELCO 1105 KINGS CASTLE (M) 73068 SLYNOIDS (M)
#76 FROGRAMMING AIDS & UTILITIES IT /57D TELCO (FOR SYSTEMS WITH ©S DR!VES‘I]QS QUEST (D&D) #207 OTHELLO (M)
£78 ARTCOM GRAFATC CONVERSION 7118 FAST TERH £121 SUFER YAHIZEE & WHEEL II 1208 PARSEC (M)
#79 DISK MANAGER 1000 ZDUCATION & PERSONAL DEVELOFNENT 7122 ADULT ADVENT & GAMES (FG) 7309 SOCCER (M)
#80 BIRDWELL DISK UTILITY (2) 722 ASTROLOGY £12) GREAT TI GAMES vOL 5 (2) 7210 SEWERMANIA (M)
85 AUTOBOOT UTILITY #24 ENGINTERING CALCUTLATIONS (2} 7124 GREAT T1 CAMES VOL 6 (2) 4218 HUSTLE/FOOTBALL (M)
786 COLUMN TEXT TIT (F) #25 MEDICAL ALERT 7125 BLACKJACK & PORER (M) #219 CHISOLM TRAIL (M)
787 ARCHIVER IIX #27 KIDS LEARNING I (2) 7126 VIDEO CHESS (M) 7220 ZERO TAP (M)
789 PROCALC DECIMAL/HEX CONVERTER #31 MORSE CODE TRAINER 7128 TETRIS (HIT from RUSSIA) 1224 ATTACK (M)
#96 STATISC & SORT ROUTINES 737 LAPD COOKBOOK (2) #1711 COMPUTER CRAPS 7229 4A FLYER (FLIGHT SIN.) (M)
#97 MEMORY MANIFULATOR #40 ARTIFICIAL INTELLIGENCE (FLIZA) 7132 AMBULANCE (M) 7232 TUNNELS OF DOOM (MOD BACKUP
7101 ENHANCED DISPLAY PACKAGE 754 ASTRONOMY 7137 DRIVING DEMON (M) PLUS 2 NEW ADVENTURES) (M)
7108 FUNLPLUS (FLUS!) 766 HEBREW TYPEWRITER 7134 ROTO-RAIDER (¥) 7233 HS ADVENTURES (3 ADV-EXBASIC)
#3110 DISK+ AID 767 GEWEALOGY (2) #135 ARTURUS (HIT-ZARGON) 7348 STRIKE THREE BASZBALL (M)
/117 UNIVERSAL DISASSEMBLER 771 KIDS LEARNING II (2) 7136 ANT-EATER (M) 7248 GREAT TI GAMES WOL 10
7119 RAG LINKER CONVERSION 795 WEATWER FORECASTER + 7137 CROSS-FIRE (M) 280 BARRAGE/SPOTSHOT
7127 PIX GRAFHICS UTILITY #138 FIRENOUSE COOKBOOK 7139 MOONMINE (M) 7250 BARRAGE/Z i
7243 0S/99 (GD) 7142 TOUCR TYPING TUTOR (M) 7110 MASH (M) ;g}; mf’s‘:’:gximn
7251 PC TRANSFER TI/IBM (DD 7184 FACE HAKER 7141 HOONSWEEPER (M) g
7253 T™E zwim/orluooo ' :::; g’-“"c"/c""“” SFETLING (M) 7143 CONGO BONGO (M) #317 BEANSTALK ADVENTURE
#254 NIRBLER/TURBO oco 7144 STAR TREK (M)
7260 TI FORTI/I (PISK ONLY- 7199 MILLIKEN ADDITION (M) £145 BUCK ROGERS (M) scort Awmmgwwl
add $8 for manual) 7200 MILLIKEN DECINALS (M) 7148 KENO & SLOTS }""5' ¥ ROWENTURES 1-13+
717 TI FORIN DEMO #203 MILLIKEN FRACTIONS (M) £149 GREAT TI GAMES VOL 7 249 T TNTURES 1416+
7116 TI FORTH TUTORIAL ;:g‘ ";;gg" 3:““5“’(\":‘ . (with HIT BLOCKRUSTER) 7350 T1 ADVI S
75079 FORTH SOURCE CO| 5n S OF MAT 7150 ULTIMATE TRIVIA -
£104 C99 COMPLIER & E:aunr #211 MIND CHALLENGFR= (M) 7151 JUNGLE HUNT (M) P = Printer required
#5007 TEZACH YOURSELF TI BASIC £212 MINUS HISSION (M) #152 FOLE POSITION (M) 6 = Graphx required
#5019 TEACH TOURSELF PX-BASIC 7213 MILLIKEN PERCENTS (M) 7153 DONKEY KONG (M) 8 = Bpeech required
#5067 BEGINNING BASIC TUTCR 7214 STORY MACHINE (M) #154 PROTECTOR II (M)
7107 GRAPHICS CODE GENERATOR ;2:5 :ﬁg‘:ﬁbﬂmg‘r(m £155 PAC MAN (M) M = Module Backup
#3912 SUPER BUGGER 216 ToN (M) 7156 CENTIPEDE (M) =
#3913 BETTER BANNERS #217 HARGAN (M) 7157 DEFENDFR (M) MM Mini Memory req.
73914 CERTIFICATE 99 ;222 HUSICM:H:x(H) 7158 SHAMUS (M) B/A = Bditor Assem.
#3915 NIOROSCOPE MAKFR 22) PHYSICA TNESS (M) 7159 MS. PAC MAN (M)
#3916 GRAFHX+ PRINT SHOFPF #225 ALIEN AODITION (M) 1150 DIG-00S (M) Exbasic and 32k mem
73917-1120) #226 ALLIGATOR MIX (M) 7151 DPICWIC PARANOIA (M) req. for most programs.
GRAFHX COMPANMIONS 1-4 7227 DEMOLITION DIVISTION (M) 2162 MOON PATROL (M) R
#3721 MAC FLICK (7) 7228 DRAGOW MIX (M) 73711 ARCADE SFECIAL (4 GAMES) ’
13733 SRmiing 10 o %) 137 EALTEATORS & CONVERSIONS (2) #3712 THRFZ GREAT CAMES
3 GRAPIX DINO; d i
SAURS (G} 7272 WIGHER MATH (2) 73713 FRO TENNISH
7273 A
f"l £306 SPEAK & SFELL II (S} (EX) Y

(818)

URDER BYPHON

366-6631 24 HOURS A DAY

TEX%»COMP

America’s Number One Tl computer retailer

— P.0. Rox 33084, Granada Hills, CA 9133
TERMS: MINIMUM ORDER FOR $2.95 PRICE IS 5 DISKS (REG. 4.95) ADD $4.00 PER ORDER FOR SHIPPING (U.s)

ALL PRICES ARE FOR CASH/CHECK, ADD 3% FOR CREDIT CARD ORDERS. INCLUDE STREET ADDRESS FORU.PS.

Page4 MICROpendium/September 1994

CONNENTS

Reunion set for Dallas

The Dallas TI Home Computer Group has a great idea.

The group, which has about 60 members and meets monthly
at Dallas’ Infomart, has scheduled a reunion of all former and
current members Oct. 29.

“I’m sure the majority of MICROpendium readers are users of
the 4/A, and therefore might be interested in coming,” writes Dan
Lowe, the group’s president.

He adds, “There will be lots to do, lots to see, lots of chit-chat and
visiting, and lots of refreshments. There will be displays and demon-
strations of TI99/4A equipment from the early days to the present; some
of the early, innovative pieces of hardware illustrating ‘look how far
we’ve come’; and, if we can swing it, authors/programmers of some of

the most popular TI programs. And while we plan to have one or two
speakers, this event will not be highly structured or tightly organized,
but rather a loose, mix-and-mingle relaxed atmosphere.”

For further information, contact Lowe at 1514 Greentree Lane, Gar-
land, TX 75042-4648, or (214) 276-0240.

MICROPENDIUM DISK SALE

Our annual sale of MICROpendium program disks starts this month.
This is an opportunity for readers to obtain the disks at a 40 percent dis-
count. For more information, see the advertisement elsewhere in this
edition.

—JK

READER TO READER

Q Alfred Slovak, Fugbachgasse 18/17, A-1020, Vienna, Aus-
tria, writes:

I copied MDOS 2.00 to my hard drive. My hard drive is a 10-
megabyte Seagate ST 412. The Geneve booted without any
problems from the hard drive (drive letter E>), but then failed to
run the AUTOEXEC file that is also stored on the root directory
of the hard drive and responded with drive letter A>. Changing
the drive letter to E? and entering AUTOEXEC by hand from
the MDOS prompt ressulted in execution of AUTOEXEC (what
else?) :

Did I make anything wrong? Do I need a special loader-pro-
gram (LOAD/SYS) stored in subdirectory DSK1?

(A Bruce Harrison of Hyattsville, Maryland, has shared with us
his reply to Jerry Keisler, who wrote in concerning his problems
with error control in his programming in the August 1994 issue.
He writes:

You’ve run across the old “file ajar” problem. That‘s a case in
which the file hasn’t really opened, but can’t be read or closed
without generating another error.

I, too, ran into this problem, when making a test program for
my Compiler, but I have an easy solution for you. The trick is to
set up a dummy error trap within your primary error trap, then
CLOSE #3. The computer will close the “ajar” file, but doing so
will generate an error in itself. The dummy error trap takes you
to the next program line (where you”d go anyway) within your
error routine. This looks utterly stupid, but is the only way I
know of to get the TI to forget about the error of the nonexistent
drive’s catalog not opening.

The listing shows my solution to this problem, using line 350
as the initial error trap, setting the new trap at 355, and then clos-
ing the “ajar” file.

190 DISPLAY AT(10,1)ERASE ALL:"CATALOG TI-W
RITERS FILES ON": :"DISK DRIVE";DR :: ACCEP
T AT(12,12)BEEP SIZE(-1_VALIDATE("12345678
9") :DR

200 DK$="DSK"&STRS$ (DR)&"."

210 ON ERROR 350 ::
IVE, INTERNAL

220 INPUT #3:A$(0),J,N,K ! YOUR PROGRAM WOU
LD CONTINUE HERE

OPEN #3:DK$, INPUT RELAT

230 DISPLAY AT(18,1):A%$(0),J,N,K :: CLOSE #
3
240 CALL KEY(0,K,S):: IF S<1 THEN 240 ELSE 1 _
90

350 ON ERROR 355 :: CLOSE #3

355 DISPLAY AT(24,1):"DISK ERROR PRESS ENT
ER"

360 CALL KEY(0,K,S):: IF S<1 THEN 360 ELSE R
ETURN 190

LJ Ted Stringfellow of Ocean Springs, Mississippi, has shared
with us his reply to Robert Schulz, who wrote in concerning his
problems with TI-Base in the August 1994 issue:

Seems like your best bet to reroute your print functions using
amenu is to create a couple of small command files. Try the fol-
lowing:

1. Type MODIFY COMMAND MODULE

2. When the edit screen comes up, type:

SET PRINTER=DSK1.TIBLIST

* PRINTER OUTPUT HAS NOW BEEN REDIRECTED
* TO FILENAME "YOURFILE"

* BE SURE THERE IS A FORMATTED DISK

* 1IN DSK1 PRIOR TO PRINTING

3.F8

To reset output to the printer, create another command file
that contains:

SET PRINTER=PIO.CR.LF

Reader to Reader is a column to put TI and Geneve users in contact '
with other users. Address questions to Reader to Reader, c/o MI-
CROpendium, P.O. Box 1343, Round Rock, TX 78680. We encourage
those who answer the questions to forward us a copy of the reply to
share with readers.

MICROpendium/September 1994 Page S

FEEDBALHK

AMS card may have
future production

Id like to thank you for your reviews in
the last two issues of our AMS card. I'd
like to applaud you and Bruce Harrison for
being fair and thorough.

The primary reason that Asgard Periph-
erals was forced to go out of business was
the TI community’s slow acceptance of
this device. We started this project almost
five years ago. When we completed it
about three years ago, it was promptly
blitzed with FUD (“Fear, Uncertainty and
Doubt”) generated by our competitors.
These same competitors have yet to ship
their product.

1 have to emphasize that no one works
in the TI community for the money; they
put in the time in order to be rewarded
with recognition by their peers, the techni-
cal and intellectual challenge, and the
sense that the TT community is still a place
where a few can make a meaningful dif-
ference. Robbed of recognition and a
~ense we were making a difference, the

cam of programmers and hardware de-
signers [put together drifted apart.

Some of us have moved on to other
99/4A projects. T was so disgusted to see
how my 12 years in the community culmi-
nated that I decided to quit — for the last
few years I’ve found a new niche in de-
signing networks and Internet consulting.
My partner Jim Krych and I are also still
working on hardware together, but more
oriented towards the general market.

However, I don’t want to belabor the is-
sue further. After some discussion, Jim
and I have agreed that it is in the best inter-
est of the community to put our designs —
functional and tested versions of both
512K and 1Mb AMS designs — into the
public domain.

Right now we have been working with a
user group to set up facilities to produce
the device. We are willing to work with
any other user group or company that
would like to do the same. Because of the
complexity of the design, we don’t feel it’s
possible to just publish the specs and be
Jone with it. Instead, anyone who is inter-
“sted should contact either of us, and we’ll
provide them the materials and some tech-
nical support.

Further, I have on hand about 80
74LS612 chips (the memory management

chip required by the device) which have
become somewhat hard to find. Anyone
who would like them can have them for $5
each (plus $5/order shipping and han-
dling). I have a variety of other parts also
available (AMS chips, Asgard Mouse ca-
bles, etc.) and will be happy to send a price
list to anyone who wants one.

Please send all orders or inquiries to
1423 Flagship Dr., Woodbridge, VA
22192. Inquiries about producing the
AMS can also be e-mailed to C_BOB-
BITT@DELPHI.COM. Thank you.

Chris Bobbitt
Woodbridge, Virginia

Fireside chat:
The beginning

It is altogether fitting and proper, this
month, September 1994, that the four-year
anniversary of the AEMS Project be cele-
brated.

Let it be said here, that although Asgard
Peripherals is no longer making TI99/4A
Home Computer hardware, we have been
working very hard in the background, to
ensure that the hard work and effort that
went into the AEMS Project shall not die
but live on.

The AMS schematics, the SRAM de-
signs both AMS and SUPERams, have
been released to the public domain. A
third party, who shall remain unmentioned
for now, has been given the technology for
the Pseudo SRAM based SUPERams.
And finally, the possibility exists for emu-
lator support.

None of this has been easy. But I think
that what we have done is an incredible
achievement, given the following:

1. None of us on the AEMS Project
Team were in the same room, let alone
same state.

2. Limited access to digital debugging
tools.

3. All that was done was part time, not
full-time design work.

All of this, a lot of hard work and perse-
verance, and the grace of God, led us to
develop this unique expanded memory
system for the 99/4A.

Not only does hardware exist, but an ex-
tensive line of tools. Some may say that
we failed to get more software, consider-

ing one time Asgard Peripherals was part
of Asgard Software. The goal of the
AEMS Project was always “ease-of-use”
expanded memory. This, we achieved.

I admit that the lack of more software is
a problem. The best hardware is useless
without it. But slowly, very slowly, more
programmers and more people are getting
the cards and the developmental software.
With support by the third party, the public
domain releases and possible emulator
support, more users will beget more soft-
ware.

Much has been done even though we at
Asgard Peripherals announced that the
AEMS Project was completed six months
ago. With this four year anniversary, I am
looking back at what has happened. This is
the last memory Fireside Chat and I have a
few things to say.

Our choice of printed circuit board de-
signer was flawed, and I alone am respon-
sible. The choice resulted in a changed de-
sign, without our knowledge, and a loss of
money when more boards were ordered
but never delivered.

The memory debates were absolutely
useless. We offered a new idea and many
resisted — to the point where what we had
done and offered was pushed aside. These
people I call the first generation. Another
point, although those involved will deny
it, the rumors and outright lies during the
first year proved to us the character of our
competitors. I believed then, as I still do,
that my team members had legitimate
complaints, and I trust them to this day.

But let it be said that even during the
first year, we started to gain supporters of
the card, some of which are the third party.
Let me say their names now — they are the
ones who fought a bias and examined a
real product, for what it did and achieved.

I thank: Brad Snyder, Bruce Harrison,
Mike Doane, David Ormand, Jon Dyer,
Tom Willsand others; forgive me if I did
not mention your names. And I thank the
AEMS Project Team: Chris Bobbitt, Art
Green, Tony Lewis, Joe Delekto, and
Chuck Abdouch.

The AEMS Project, one way or another,
will not die off. At this timel am providing
schematics to two people who are also
programmers.

(See Page 6)

Page 6 MICROpendium/September 1994

Extended BASIC

Experimenting T

By W. LEONARD TAFFS

The following program and table were
written by Al Armstrong, a member of the
Southwest 99ers user group of Tucson,
Ariz. Taffs, also a SW99er member, wrote
the text—Ed.

XCPSNDBA and XSNDTBL came
about when Al saw my SOUND/EXP in
the SW99ers newsletter of July 1994,
SOUND/EXP also appeared as “SOUND”
in the July 1994 MICROpendium.

XCPSNDBA will load from Extended
BASIC or from TI-BASIC using either
Mini-Memory or the Editor/Assembler
module. When module menu appears, se-
lect TI-BASIC. Once in TI-BASIC, enter
“OLD DSK1.XCPSNDBA” to load the
program. There are minimal instructions
in the program itself — Al did not know I
was interested in passing this program on
— s0 a few notes may help:

1. As the program screen will remind
you, if you do not make this change before
running program, you will need to un-RE-
Mark one of two lines. For Extended BA-
SIC, un-REMark line 204. To run in TI-
BASIC, un-REMark line 202.

2. When program is running, you will
be prompted three times for DATA fre-
quencies. After entering these frequencies
the program advances to a menu with the
following six keypress options:

T — to hear the tones selected sounded
simultaneously.

U — to hear the individual tones linked
with attack/decay/level modification.

C — to hear a chimes sound (not using
input frequencies).

with sound

V — to hear a vibraphone-like sound or
vibrato effect (not using input frequen-
cies).

D — to input more DATA frequencies
(prev. entry still on screen)

Sp Br — Space Bar clears the screen
and returns to the beginning screen.

3. To repeat a key selection, press the
key again. To terminate a key selection,
hold the key down.

4. The difference between selection D
or pressing Space Bar — both allow you to
resume entering frequencies — is that se-
lecting D will leave the previous entry
scrolling up the screen. The Space Bar will
return you to the opening screen.

5. The C and V key options do not em-
ploy the frequencies you enter but are
fixed. If you wish to try other frequencies,
change the appropriate program lines for
these.

6. You can enter “1” as the frequency
data at any DATA prompt and “1” will act
as a default to move to the next program
line. Thus you can hear just one or two fre-
quencies at a time if you wish. The “1” be-
haves like a null string,

With the accompanying frequency table
and sound chip information, XSNDTBL
should prove to be a valuable resource to
programmers who are interested the sound
reproduction capabilities of the TI-99/4A.
It is obvious these two files by Al Arm-
strong represent a great deal of work and it
is to be hoped that they will be useful ref-
erences to anyone interested in program-
ming or learning about sound with the TI.

XCPSNDBA

1 DIM A(12)!101
2 CALL CLEAR !209
3 CALL INIT !157
4 CALL SCREEN(3)!148
5 REM XCPSNDBA program BY AL
ARMSTRONG of SWY99ERS TUCSON
., AZ was in response to TAFF
S' FEEDFORTH COLUMN's !086
6 REM program “SOUND/EXP" fi
rst published IN JULY '94 swW
99ERS Newsletter P.4. 1037
7 PRINT :"INPUT SOUND DATA

Freq 110 to 10,00
0 hz.":1195
8 I=0 1000
9 PRINT : :1006
10 INPUT " DATA= ":T(I)!1182
12 F=T(I)i014 e
14 I=T+1 1011 {
16 IF F*{(I<3)THEN 10 !129
18 IF (I<>3)+(T(3)<>0)+(T(0)
<110)+(T(1)<110)+(T(2)<110)T
HEN 46 1206)
20 I=0 !000
22 PRINT :
11087
24 PRINT ;STRS(T(I));",*;!25
4
25 I=I+1 !011
26 IF I<2 THEN 24 1024
27 PRINT ;STRS(T(I)): :"GT1,
GT2,GT3" : "Frequencies"; | 082
28 REM!154
30 GOSUB 200 1024
32 CALL KEY(0,K,S)!187

(See Page 7)

:"Tones or UFO":

FEEDBRLCH

(Continued from Page 5)

But I am personally glad that the project
for us is over. It was a tremendous effort.
The community has been given a real
choice for expanded memory. And the op-
tions exist for people to get the cards. Not
many orphan computers can boast of an

expanded memory system with extensive
tools, and “ease-of-use!”

I thank you, the TI99/4A community,
for the support over these years. To you,
take care and God Bless!

James W. Krych

Director, Research and Development,

Asgard Peripherals
North Olmsted, Ohio
!

Send your letters and commentsi“
to MICROpendium Feedback, P.O.

Box 1343, Round Rock, TX 78680.

MICROpendium/September 1994 Page7

XCPSNDBA—

(Continued from Page 6)

34 IF S<1 THEN 32 !041
36 ON 1+POS(“DTUCV“,CHR$(K),
1)GoTo 2,8,60,70,120,90 1245
38 T(I)=20000 !135
40 IF I=2 THEN 20
41 PRINT " DATA "
42 I=I+1 !011
44 IF T(I)>109 THEN 40 ELSE
38 1196
46 T(3)=0 1116
48 I=0 1000
50 GOTO 44 1123
52 DATA 144,178,211,192,145,
177,193,146,176,212,192,147,
177,193,148,178,213,192,149,
179,193,150,180,214,192,151
1113
53 DATA 181,193,152,182,215,
192,153,183,193,154,184, 216,
192,155,185,193,156,186,217,
192,157,187,193,158,188,218
1131
54 DATA 192,159,189,193,219,

0,159,192,220,191,193, 221,
" 1,222,193,223,0 1029
55 DATA 0 1140

1019
1195

56 DATA "KEY OPTION"," T T
ones"," U UFO "," C Chi
me"," V Vibro"," D DATA

", *SpBr REDO "
57 REM !186

58 REM !186

60 CALL SOUND(750,T(0),0,T(1
),8,T(2),4)!033

1154

62 GOTO 32 !111
70 RESTORE 85 !178
72 I=0 !000

74 CALL SOUND(1,T(0),30,T(1)
,30,T(2),30)!1068

76 READ I 1224

77 IF I=0 THEN 82 !079

78 CALL LOAD(-31744,1I)!132
80 IF I THEN 76 !146

82 CALL KEY(0,K,S)!187
84 IF S=0 THEN 70 ELSE 32
83

85 DATA 144,145,146,147,148,
149,150,151,152,153,154, 155,
156,157,158,159 1110

86 DATA 223,222,221,220,219,
218,217,216,191,190,189,188,
187,186,185,184,183,182,181,
180,179,178,177,176,215,214
1117

87 DATA 213,212,211,210,209,
208,152,150,148,146,144 1208
88 DATA 191,223,159,0 1215
90 RESTORE 95 1188

91 READ I !224

'1

92 IF I=0 THEN 100 !097

93 CALL LOAD(-31744,1I)!132
94 GOTO 91 1170

95 DATA 143,9,144,141,145,14
3,146,141,147,143,140,141,14
9,143,150,141,151,143,152,14
1,153,143,154,141,155,143 !1
91

96 DATA 156,141,157,143,158,
142,159,0,191,223,255,0 1045
97 DATA 144 1247

98 DATA 0 1140

99 DATA 144 1247

100 CALL KEY(0,K,S) 1187

101 IF S=0 THEN 100 !107

102 IF K=32 THEN 90 !143

103 READ I !224

104 IF I=0 THEN 32 1029

105 CALL LOAD(-31744,T1)!132
106 GOTO 103 1182

120 RESTORE 52 1145

122 CALL SOUND(1,550,30,782,

30,980,30) 1080

124 READ T !224

126 IF I=0 THEN 32 !029

128 CALL LOAD(-31744,1I)!132
130 GOTO 124 !203
150 I=0 1000

152 AD=404+32*RD
154 READ IS !004

1239

SOUND TABLES

The following table was created by Al Armstrong of the South-

west 99ers, Tucson, Ariz—FEd.

* TONE-GENERATOR: (2 bytes) ***

Binary Hex Dec
GT1; (Byte 1)

10000000 >80 128

1000xxxx% >81-F 129-142

10001111 >8F 143
GT1,2,3 (Byte 2)

00000000 >00 0

0 0XXXXXX >1-3E 1-62

00111111 >3F 63
GT2; (Byte 1)
#0100000 >AQ 160

i010xxxx >ALl-F 161-174

10101111 >AF 175

(Byte 2)

GT3; (Byte 1) (Lb)
11000000 >C0 192 same
1100xxxx >Cl-F 193-206 as
11001111 >CF 207 GT1
Fcode (Byte 2) (Hb)
(Lb) Computation of Fcode,
0 Hb and Lb segments.
1-14 Hb= INT(0.0625*Fc)= INT(Fb)
15 Lb= INT(Fc-16*Hb)= INT(16*(Fb-Hb))
(Hb) Frequency Code vs Frequency Number
0 Fc= 111860.8/Fn Fb= 6991.3*Ti
1-62 Fn= 111860.8/Fc Ti= 1/Fn
63 SOUND-BYTE VALUES
: TABLE Ia
(Lb) * NOISE-GENERATOR: (1 byte) ***
_same Binary Hex Dec TYPE
as GPN; —=-——==—m - mmmm s
GT1 11100000 >E0 224 1 *\
(Hb) 11100001 >El 225 2 *-Periodic

(See Page 8)

Page8 MICROpendium/September 1994

SOUND TABLES—

11100010
11100011
GWN;
11100100
11100101
11100110
11100111

(Continued from Page 7)

>E2 226 3 %/

>E3 227 4 PNmod*GT3
>E4 228 1 *\

>E5 229 2 *- White
>E6 230 3 */

>E7 231 4 WNmod*GT3

*ATTENUATION (1 byte) #actsaok

Binary

Hex

GTl; - e

10010000
100 1xxxx
10011111

GT2; —~—mmm e

10110000
1011xxxx
10111111

GT3 ;- —— e

11010000
1101xxxx
11011111

11110000
1111xxxx
11111111

>FF

Dec DB*
144 0
145-158 -2\-28
159 Ooff
176 0
177-190 -2\-28
191 Off
208 0
209-222 -2\-28
223 Off
2490 0
241-254 -2\-28
255 Off

SOUND-BYTE VALUES

TABLEIb

SOUND-BYTE VALUES Tables la,Ib and Hb-Fcode VAL-
UES Tables ITa,IIb,IIc,IId assist in deriving a decimal or hex
number that will produce sound signals of specific quality and
loudness when stored in the TI-99/4A System Console sound-
chip. Numbers may be used individually or grouped into a sound
list which is written to the sound-chip address. All numbers are
byte values of 0 to 255 decimal, (>0 to >FF Hex).
ook GTI’GTZ’GTs afeske sfeofe 30t oe sheade ok ok sk ke sk

Hb Fcode
Hex

FREQ @ Lb >F
hz [Fi]
109.3 0.2
111.1 0.1
112.9 0.1
114.7 0.1
116.6 inc
118.6 0.1
120.7 0.1
122.8 freq
125.0 0.1
127.3 0.1
129.6 hz
132.1 0.1
134.6 0.2
137.3 0.1
140.0 0.2

>30 48 142.9 0.1
Hb-Fcode VALUES
TABLE Ia
Hb Fcode FREQ @Lb >F
Hex Dec hz [Fi]
>2F 47 145.8 0.2
>2E 46 148.9 0.2
>2D 45 152.2 0.2
>2C 44 155.6 inc
>2B 43 159.1 0.2
>2A 42 162.8 0.3
>29 41 166.7 0.3
>28 40 170.8 freq
>27 39 175.1 0.2
>26 38 179.6 0.2
>25 37 184.3 hz
>24 36 189.3 0.3
>23 35 194.5 0.4
>22 34 200.1 0.4
>21 33 206.0 0.4
>20 32 212.3 0.4
Hb-Fcode VALUES
TABLE IIb
Hb Fcode FREQ @ Lb >F
Hex Dec hz [Fi}
>1F 31 218.9 0.4
>1E 30 226.0 0.4
>1D 29 233.5 0.5
>1C 28 241.6 0.5
>1B 27 250.2 0.6
>1A 26 259.5 0.6
>19 25 269.5 inc
>18 24 280.4 fregq
>17 23 292.1 0.7
>16 22 304.8 0.8
>15 21 318.7 hz
>14 20 333.9 1.0
>13 19 350.7 1.1
>12 18 369.2 1.2
>11 17 389.8 1.3
>10 16 412.8 1.5

Hb-Fcode VALUES

TABLE ¢

Hb Fcode FREQ @ Lb >F
Hex Dec hz [Fi]
>0F 15 438.7 1.8
>0E 14 468.0 2
>0D 13 501.6 2

(See Page 9)

~

MICROpendium/September 1994 Page 9

SOUND TABLES—

(Continued from Page 8)
>0C 12 540.4 3
>0B 11 585.7 3
>0A 10 639.2 4
>09 09 703.5 5
>08 08 782.2 6
>Q07 07 880.8 7
>06 06 1007.8 9
>05 05 1177.5 12
>04 04 1416.0 ?
>03 03 1775.6 ?
>02 02 2380.0 ?
>01 01 3608.4 ?
>00 00 7459 .4 ?

Hb-Fcode VALUES
TABLE IId

There are four ways to invoke sound from the sound-chip.

1. A routine in BASIC grom is accessed by the CALL
SOUNDY) statement. Parameters in that CALL are translated into
the binary form shown in TABLE I.

2. A routine in Console ROM is activated by assembly lan-
guage instructions and code as shown in the Hex column. Again
data are translated into the binary form of TABLE 1.

~
‘oecure takes over

CC-40 service

Cecure Electronics is scheduled to take over as the only TI-
authorized repair and service center for the CC40 as of Oct. 1,
according to Don Walden of Cecure.

Cecure became the authorized repair and service center for the
TI99/4A Sept. 1.

Walden says TI has agreed to his reducing prices on repairs
and services. The company has been reviewing to ascertain for
which items reductions will be dffpropriate.

Walden notes that the CC-40 is popular in Europe. Some users
use a German hexbus interfacing it with the TL

“In many cases it’s more compact than a P-Box,” he says.
“There are a number of items which can be daisy-chained.”

Walden notes that he has “close to 100" color monitors for the
99/4A, whereas he was expecting one or two dozen. He says he
has a lot of documentation, “so people who purchase the 4A at a
garage sale with nothing can get the docs from us.”

For further information, contact Cecure Electronics, P.O. Box
222, Muskego, WI 53150; 1-800-959-9640 or (413) 679-4343
(voice); or (414) 679-3736 (BBS).

upport MICROpendium advertisers
They support you

3. The sound-chip has a direct access address port. Hex data
bytes can be moved to this address by assembly language routines.
They are interpreted in the binary form.

4. The CALL LOAD() routine in grom of the XBASIC, MINI
MEMORY and ED/AS SS Modules will send data bytes from a
Basic program directly to sound-chip. Decimal data is converted
to binary form.

All four sound producing methods can be accessed from a BA-
SIC program if an appropriate SS Module is installed in the con-
sole.

Because the sound-access methods differ in ease of use, code
complexity, functional speed and dynamic flexibility some com-
bined use of them in a program can be attractive. Such a scheme is
entirely practical. The sound-chip has no time-dynamic function
of its own other than tonality and loudness. Once the registers are
set, the tone pitches, noise quality and loudness remain fixed until
another set of data is written in. No auto-sound-sprites here! So,
the burden of making neat, informative and distinctive sound sig-
nals rests right on the writers shoulders. And don't burn up all the

time and memory overhead doing it.

Reference Material

Editor/Assembler Manual, Texas Instraments, Sound pgs 312-317.

Users Reference Guide, Texas Instruments, CALL SOUND Subprogram pgs I184-85.

TI 99/4A Intern, Heiner Martin, CALL SOUND GPL code, pgs 164-165. Interrupt Routine,
sound processing segment, ROM code >09EC->0A64, pgs 31-32.

Beginner's Guide to Assembly Language on the TI-99/4A, Peter Lottrup, Chapter 10 Generat-
ing Sounds, pgs 167-180.

EELUNEN

P.O. Box 132, Muskego, W1 53150

SALE + SALE ~ SALE*SALEe SALE

128K X 0 LP 80NS MEMORY HITACHI

Quantities of 4 or more, else $17.95
Quantities limited to 8 per customer.
SORRY, NO DEALER SALES.

NEW « NEW » NEW « NEW + NEW ¢« NEW « NEW
$15 « 515 » $15

FORMAT YOUR HARD DRRIVE FROM MDOS
» USE 34 SECTORS PER CYLINDER -
ADD AN ADDITIONAL 6% STORAGE
1.2 MEG TO YOUR 20 MEG HARD DRIVE
2.4 MEG TO YOUR 40 MEG HARD DRIVE

IM BRIV BRI

HARDWARE/SOFTWARE
NEW + NEW o NEW ¢ NEW o NEW « NEW ¢ NEW

MBPII CARD

BARE BOARD, MANUAL SOFTWARE $27

ABOVE-PLUS ALL PARTS-YOU SOLDER $47

COMPLETED ASSEMBLY $67

CLOCK CHIP MM58167AN $ 9

CLOCK CRYSTAL 32.768 KHz $ 2

ANALOG-DIGITAL CHIP ADC0OB809CCN $ 6
MASTER CARD or VISA ORDERS

CALL TOLL FREE 1-800-959-9640
VOICE # 414 -679-4343 FAX # 414-679-3736

Page 10 MICROpendium/September 1994

THE ART OF ASSEMBLY — PART 39

More mysteries unraveled

By BRUCE HARRISON
©1994 B. Harrison

In last month’s column, we teased you a bit by mentioning that
we’d gotten our compiler to report errors, breakpoints, and other
messages by the line numbers from the original Extended BASIC
program, but didn’t say how that was done. Today we’ll fill that
gap for you, and also clear up some other “pending” mysteries
we’ve mentioned in previous columns.

FOOLING XB

In our work on the compiler, we became concerned about the
business of error reporting, and the fact that if errors were report-
ed they would most often be reported as occurring in line 32767,
because that’s the line of the “shell” XB part of the compiled pro-
gram that XB “thinks” it’s executing. If we left matters like that,
a user of our compiler would be left to guess where in his source
XB program this error might be tracked down. Thus we set out to
find some way of “fooling” XB into reporting the error as, for ex-
ample, NEXT WITHOUT FOR IN 125, where 125 would be a
line that doesn’t exist in the compiled program, but that’s where
the original XB program would report this error.

We knew of course that XB has to “know” what line it’s cur-
rently executing, so we got out some reference material to track
down where that information gets stored. The address >832E
was listed as “Pointer to current line number in line number
table.” That seemed a likely place to look, so we arranged a test
by typing in a small XB program like this:

10 BREAK 20
20GOTO 20

This program of course won’t really do anything except run
through line 10 and then stop with the report “BREAKPOINT IN
20.” When that happened, we typed in CALL PG, to get into our
P-GRAM program that allows us to examine memory. Sure
enough, there was an address number in >832E that started with
>FF. This looked promising, as the line number table for such a
short program would surely be in the >FF area. We then looked
at that address, and found there another number in the >FF range.
This was most certainly not the line number. It was the address of
the line itself. Sure enough, if we looked two bytes back from the
address in >832E, we were at the location in the line number table
that contained >0014, (decimal 20). That’s what we were after.

Now we suspected that XB might determine the line number
for breakpoints and such by taking the address from >832E, sub-
tracting two, and then taking the number from that address to re-
port the line number on the screen. Thinking that such is the case
and proving it are, of course, two very different things. We set up
an experiment in one of our test XB programs (this one always
ends with an error because it was designed to do just that), then
patched up the compiler’s code so that the following would hap-
pen:

1. The compiler would record the current line number as a

(See Page 11)

Sidebar 39

* SIDEBAR 39

FIRST IS A SMALL PIECE FROM
SOURCE CODE CREATED BY THE
COMPILER

*

EACH LINE OF THE XB PROGRAM

IS IDENTIFIED BY AN *L* PLUS

THE LINE NUMBER BEING PROCESSED
HERE IS SOURCE CODE CREATED BY
LINES 20 THRU 30 OF A DEMO PROGRAM

IR S S S S

L20 BL @SETCL USE SUBROUTINE SETCL

DATA 20 TO SET CURRENT LINE NUMBER
BL @FORSET SET UP A FOR-NEXT LOOP
DATA 1 FROM 1

DATA 5 TO S

DATA 1 STEP 1

DATA IVOQ VARIABLE IVO (I IN XB)

DATA >0000 ALL PARAMETERS JUST NUMBERS
LMO DATA 0,0 STORAGE FOR LOOP COUNTING
BL @LIMCHK CHECK LIMIT ON THIS LOOP
DATA NXO IF FINISHED, GOTO LABEL NXO
BL @IVTFP CONVERT IVO INTO FLOATING POINT I

DATA IVO (ALLOWS I TO BE USED BY FL #4, BELOW)
BL @TOGI USE GPL INTERPRETER [READ A$(I)]

DATA FL4 WITH FAKE LINE #4

BL @QIVTFP CONVERT AGAIN {
DATA IVO IV0O TO F.P. VARIABLE I

BL @TOGI USE GPL INTERPRETER

DATA FLS5 WITH FAKE LINE 5 (DISPLAY AT(I*2+5,6)...]

BL @INCLV PERFORM "NEXT I*

DATA LMO WITH DATA AT LABEL LMO
NXO0
BL @TOGI USE GPL INTERPRETER
DATA FL6 FOR FAKE LINE 6 [DISPLAY AT(24,6)...]

L25 BL @SETCL SET CURRENT LINE

DATA 25 AT 25

BL @KEY "CALL KEY* (SUBROUTINE KEY NOT SHOWN}
DATA 0 0 (KEY-UNIT 0)

DATA 18 K (KEY VARIABLE K)

DATA 22 S (STATUS VARIABLE S)

DATA >0220 K AND S ARE FLOATING POINT VARIABLES
BL @TOGI USE GPL INTERPRETER

DATA FIO FOR FAKE IF #0 [IF S<1]

MOV R1,R1 CHECK R1 TRUTH INDICATION

JNE ELO IF R1 NOT ZERO, STATEMENT FALSE

B @L25 IF TRUE, GOTO LINE 25 [THEN 25]

ELO
* IF STATEMENT WAS NOT TRUE, CODE FOLLOWING ELO WILL EXECUT
L30 BL @SETCL SET LINE NUMBER

DATA 30 AT 30

BL @ONGTS USE SUBROUTINE ONGTS

DATA NEO NUMERIC EXPRESSION #0 [K-48]
DATA >8405 CONTROL WORD

DATA LUO LOOKUP TABLE #0

* CONTROL WORD DECODES AS FOLLOWS:
* 8 MEANS THIS IS ON-GOSUB, NOT ON-GOTO
* 4 MEANS A NUMERIC EXPRESSION (K-48) AS ARGUMENT
* 5 MEANS THERE ARE 5 BRANCH LINE NUMBERS
*
* LUO IS THE LOOKUP TABLE AS FOLLOWS: (
LU0 DATA L120 ADDRESS OF LINE 120
DATA L200 o200
DATA L230 * o230
DATA L300 v %300

MICROpendium/September 1994 Page 11

?_THE ART OF ASSEMBLY —

(Continued from Page 10)
DATA entry in the source code it creates.
2. The compiled program would place that data item at some
convenient location, called CLNUM.
3. When an error was to be reported, the compiled program
i would load a register with CLNUM+-2, then move that register to
1 >832E before its BLWP @ERR.

In theory, this meant that the ERR routine would take that ad-
dress from >832E, subtract two from it, then take the number
from the resulting address and report that number on screen. The
| theory in this case was exactly right! The snippets in today’s
sidebar show how this process worked for error reporting, for
| breakpoints, and for error or warning messages in “Fake Line”
processing by the compiled program.
| THE ERR REPORT

Okay, here’s another mystery we can clear up. On page 416 of
the Editor/Assembler manual there’s a long list of equates, some
of which are left sort of unexplained. ERR EQU >2034 was one
that baffied us for some time, especially since the next page con-
tains a long list of possible error reports complete with addresses,
but there didn’t appear to be any way to connect the two things.

By a mostly trial-and-error process, we have doped out just exact-

ly how to use the numbers from that error message list and the

ERR equate, so that, when we’re operating from an XB environ-
f)ent, we can use XB to report the selected error message.

% It’s just this simple. Take that address from the table on page
417 for the message you want reported. (e.g >1E00 for BAD
VALUE) Write this into your source code:

LI RO>1E00

BLWP @>2034

That’s it! When these two lines execute, XB will produce the

“boop” sound, and will report BAD VALUE IN XXX, where

XXX will be the line number. The code that’s used by the vector

at >2034 takes whatever was in the caller’s RO and uses that to

determine which message it will print.
SOME DAYS IT’S EASY

Shortly after discovering the answers we’ve just discussed, we
were fooling around with one of our compiled test programs, in
which we’d placed an INPUT statement to get a value for one of

the variables used in the program. This INPUT would go into a

numeric variable, which our program would then use as the limit

value for a FOR-NEXT loop. In our compiler, INPUT is simply
passed along to the GPL Interpreter to perform, since there’s no
speed advantage to be gained from replicating the INPUT
process. Thus the source for the compiled program uses a BL

@TOGI to execute a Fake Line (see last month’s column) for the

INPUT statement.

‘While running the compiled program, we decided to be daring
and put an illegal entry in at this input prompt. We typed Q <En-
er> at the prompt. What happened surprised and delighted us.
qée got the boop, a report saying WARNING - INPUT ERROR

IN 95, and the prompt on the screen just below that. The number

95 was indeed the line number from the original XB program, but

what would happen next? We typed in 20 <Enter> to answer the

(See Page 12)

DATA L40 " » " 40

THE ABOVE SECTION OF DEMO PROGRAM
XB CODE LISTED IN 28 COLUMNS
READS DATA TO PUT A MENU ON SCREEN

L S

20 FOR I=1 TO 5 :: READ A$(I
) :: DISPLAY AT(I*2+5,6) :A$ (I
):: NEXT I :: DISPLAY AT(24,
7)BEEP: "SELECT BY NUMBER*

25 CALL KEY(0,K,S):: IF S<i

THEN 25

30 ON K-48 GOSUB 120,200,230
,300,40

NEXT PART IS FROM THE "RUNTIME* ROUTINES
WHICH THE COMPILED PROGRAM USES

*

*

.

* SUBROUTINES USED IN COMPILED PROGRAM

* 24 SEP 93

* STORED AS STDSUB

>

TOGI MOV *R11+,@>832C PUT FAKE LINE ADDRESS AT >832C
LI R1,CLNUM+2 POINT AT CLNUM + 2

MOV R1,@>832E PLACE THAT ADDRESS AT >832E
LWPI >83E0 LOAD THE GPL WORKSPACE
B @>006A BRANCH TO GPL INTERPRETER
N
* LABEL TRUE IS USED WITH AN IF-THEN
* SO THAT IF THE *IF* IS TRUE, OUR REGISTER 1
* WILL BE CLEARED. OTHERWISE, THE "IF" WILL
* RETURN TO US AT LABEL BACK, AND R1 WILL STILL
* CONTAIN THE ADDRESS WE LOADED INTO IT IN TOGI
.
TRUE CLR @WS+2 CLEAR OUR REGISTER 1 IF STATEMENT WAS
TRUE
BACK LWPI WS RETURN FROM A FAKE LINE TO OUR WORK-
SPACE
RT THEN BACK TO ASSEMBLY CODE
SUBRET DECT R15 SUBTRACT 2 FROM OUR STACK POINTER
MOV *R15,R11 MOVE WORD INTO OUR R11
RETURN LIMI 2 ALLOW INTERRUPTS
LIMI 0 THEN STOP THEM
LWPI >83E0 LOAD THE GPL WORKSPACE
BL @>20 CHECK FOR FUNCTION-4 KEYPRESS
JNE RETO IF NOT, JUMP AHEAD
LI R6,CLNUM+2 ELSE SET FOR BREAKPOINT
MOV R6,@>832E WITH ADDRESS CLNUM+2
LI R6,CONLIN SET FOR A "CONTINUE®
MOV R6,@>832C WITH GPL INTERPRETER
B @>6A THEN BRANCH TO GPL INTERPRETER TO BREAK
RETO LWPI WS LOAD OUR OWN WORKSPACE
RT THEN RESUME AT ADDRESS IN R11

SETCL MOV *R11+,@CLNUM MOVE THE DATA AFTER THE BL INTO
CLNUM
RT THEN RETURN
GENERR LI R1,CLNUM+2 GET LINE NUMBER POINTER
MOV R1,@>832E INTO >832E FOR ERROR REPORT LINE
BLWP @ERR (ERR EQUATED TO >2034, NOT SHOWN)

* ONGTS ON-GOTO / ON-GOSUB
* HARRISON COMPILER
* 25 SEP 1993
* STORED AS ONGTS
*
*
ONGTS MOV *R11+,R2 FIRST DATA INTO R2 (ARGUMENT AD-
DRESS)
MOV *R11+,R13 SECOND INTO R13 (CONTROL WORD)
MOV *R11+,R3 THIRD INTO R3 (LOOKUP TABLE AD-
DRESS)

Page 12 MICROpendium/September 1994

THE ART OF ASSEMBLY—

(Continued from Page 11)
prompt with a numeric response, and our compiled program went
on about its business just as it normally would!

Why did this work? What XB apparently did after issuing the
warmning was to go back to the start of our INPUT fake line, and
simply execute it again. When we answered the prompt with a le-
gal input, XB continued the fake line, to wit :: GOTO 32767.
That took us back into the Assembly code right where it should,
and our program performed as expected. Flushed with success,
we went back into our original XB test program, put in a line be-
fore No. 95 that said ON WARNING NEXT, then saved that in
merge format for compiling.

‘When compiled, this too behaved exactly as it should. When
the bad entry was made, no boop or warning message appeared,
but the screen scrolled up and the input prompt was repeated. We
made a correct entry, and the program continued from there. In-
cidentally, ACCEPT AT will behave in a similar manner, except
that with the ON WARNING NEXT in effect, there will be no
screen scrolling, and the input field will be cleared for a new input
value.

AND THEN OTHER DAYS

Actually, it was the very same day, in this case. Having proved
that our faking of line number reporting worked for WARNING
messages as well as for ERROR reports, we tried yet another lit-
tle test, starting with the original XB program just discussed. At
the input prompt, we entered 0. The XB program then complete-
ly skipped the FOR-NEXT loop, and went on to what followed
that. Unfortunately for us, that’s not what happened in the com-
piled version.

Our Compiler’s FOR-NEXT implementation was designed to
handle almost every possible error, but in this case it went ahead
and executed the FOR-NEXT loop once, then went on to the in-
struction after the NEXT. This happened because we were not
checking the state of the index variable against the limit value un-
til we got to the NEXT part of the loop. Once again it was back to
the drawing board for our FOR-NEXT in the compiler.

That’s just one small example of why things get messy when
trying the impossible. Just before this happened, we had run
through a similar exercise on the PRINT function. Just when we
thought the PRINT was working okay, we remembered that
there’s a function called TAB. (Expletive Deleted!) Two whole
days were eaten up with that little problem. While we were about
it, though, we also took care of the cases like this:

PRINT ,”Hello There”

This skips over halfway across the screen before printing Hello
There, unless there was a comma at the end of the last PRINT
statement, in which case the screen will scroll and Hello There
will appear at the start of the next line. You get the message by
now. Once one decides to implement an XB function, one must
go in and check out all the possible variations, including PRINT
with no argument, PRINT :“Something,” and so on.

This can lead to some surprising results. For example, does
anyone know what happens if you ask XB to do the following?
PRINT TAB(33);“Hello”

(See Page 13)

MOV R11,R14
MOV R13,R12

STASH R11 RETURN ADDRESS IN R14
PUT R13 INTO R12

SRL R12,8 SHIFT RIGHT 8 BITS

ANDI R12,7 MASK ALL BUT LOWEST THREE BITS
JEQ ONGTE1 IF 2ERO, AN ERROR CONDITION

CI R12,1 COMPARE TO 1

JNE DECCV2
MOV *R2,R2

IF NOT ONE, JUMP AHEAD
ELSE GET INTEGER VARIABLE VALUE

JMP SETCV THEN JUMP
DECCV2 CI R12,2 COMPARE TO 2
JNE DECCV4 IF NOT, JUMP AHEAD

AL R2,VARTBL-2 SET UP FOR F.P. VARIABLE
MOVB *R2+,R9 FIRST BYTE OF F.P. ADDRESS
SWPB RY SWAP

MOVB *R2+,R9 SECOND BYTE OF F.P. ADDRESS
SWPB R9 SWAP AGAIN

BL @MOVFAC USE A SUBROUTINE (NOT SHOWN)
MOV @FAC,R2 GET INTEGER VALUE INTO R2

JdMP SETCV THEN JUMP
DECCV4 MOV R2,G@FAC STASH ADDRESS OF NUMERIC EXPRESSION
AT FAC

BL @INTERP INTERPRET EXPRESSION

MOV @FAC,R2 MOVE INTEGER IN TO R2

SETCV ABS R2 TAKE ABSOLUTE VALUE
MOV R13,R12 MOVE R13 TO R12
ANDI R12,>00FF USE ONLY-LSB

C R2,R12 COMPARE

JGT ONGTE2 IF R2 > R12, ERROR (BAD VALUE)

DEC R2 DECREMENT R2

JLT ONGTE2 IF <0 THEN BAD VALUE

SLA R2,1 DOUBLE R2

A R3,R2 ADD LOOKUP TABLE ADDRESS

MOV *R2,R5 GET THE GOTO-GOSUB ADDRESS IN RS (

MOV R13,R12 MOVE R13 AGAIN |

JGT ONGSX IF POSITIVE, THIS IS ON-GOTO

MOV R14, *R15+ ELSE IT'S ON-GOSUB, SO STACK RETURN
ADDRESS |

ONGSX B *RS
ONGTE1 LI RO,>0300
JMP ONGTEX
ONGTE2 LI RO, >1E00Q
ONGTEX B @GENERR

BRANCH TO THE ADDRESS IN R5

ERROR REPORT WILL BE *SYNTAX ERROR*
JUMP AHEAD |
ERROR REPORT WILL BE *BAD VALUE*
BRANCH TO ERROR REPORTING CODE

END OF COMPILER SUBROUTINE FRAGMENTS

*
.
.
* FOLLOWING IS SHORT XB PROGRAM
* USED TO TEST VPUSH/VPOP

* THROUGH LINKAGE TO ASSEMBLY

«

1

2

! TEST OF VPUSH/VPOP
! USE WITH PUPOP/O
3 | EXTENDED BASIC ONLY
10 CALL INIT
20 CALL LOAD(*DSK1.PUPOP/O*)
30 A=48.254 :: PRINT A
40 CALL LINK("TEST*,A)
50 PRINT A
«
* FOLLOWING IS SOURCE FILE PUPOP/S
* TO USE, ASSEMBLE INTO PUPOP/O,
THEN RUN WITH ABOVE XB PROGRAM

PUSH/POP TEST
DSK1.PUPOP/S
WITH XB

ENTRY LABEL TEST

REQUIRED EQUATES

L I I 4

NUMREF EQU >200C
NUMASG EQU >2008
XMLLNK EQU >2018

NUMERIC REFERENCE
NUMERIC ASSIGNMENT
XML LINK VECTOR

MICROpendium/September 1994

Page 13

;HE ART OF ASSEMBLY—

(Continued from Page 12)

Harry Wilhelm knows because I told him, but who else out
there knows? (The Shadow Knows!) If the number in the TAB ar-
gument is greater than 28, XB will simply subtract 28 from it, and
keep doing so until it’s less than 28, then will execute a tab to this
number position in the current line. For the above case, 33-28=5,
so the “H” in Hello will be at the fifth position on the bottom line
of the screen. TAB(61) would produce exactly the same result,
since XB would subtract 28 twice to arrive at the number 5.
Things like this can just drive a person crazy. Harry Wilhelm was
of the opinion that if the TAB has a number greater than 28, it
should cause the screen to scroll enough times to make up the
numbers above 28. Instead, we put a simple loop into our
PRNTAB routine so that it will exactly match the performance of
XB’s TAB.

BUT WHATIF...?

One of the problems in this process of compiling is the very
richness of the language. This means that for each new thing we
try to implement as a compiled function, there are many potential
variations on how the programmer might use that function, and
we have to consider each and every one. In almost every situation
where a number can be used in a program, for example, that can
be either a simple number, a numeric variable, or numeric expres-
sion. We have further complicated things for ourselves by creat-

+#g the concept of the integer variable, so there are four possible
TE;ngs that can supply the numbers for our functions.

This means that for functions like the setting up of a FOR-
NEXT or CALL HCHAR, or even CALL KEY, the compiler has
to determine which kind of thing each parameter is, and then has
to put something into its source file so that the “runtime” routine
will know this, and can properly handle each possible kind of pa-
rameter.

To let our compiled program know what’s up, we use a data
word in which each nybble is coded separately, thus maximizing
our memory efficiency. For example, the routine that does both
CALL HCHAR and CALL VCHAR has a maximum of four pa-
rameters. Each of these can be a simple number, an integer vari-
able, a floating point (XB) variable, or a numeric expression. To
tell our routine what type each parameter is, we use the four nyb-
bles of one word. The right nybble contains 0 if the ROW is a
number, 1if it’s an integer variable, 2 if it’s a floating point vari-
able, and 4 if it’s a numeric expression. Each of the other three
nybbles is coded in similar fashion to indicate the kind of thing
that COLUMN, CHARACTER, and REPEAT parameters are.
This same process is applied to the parameters for the FOR setup
in FOR-NEXT, and for the parameters in CALL KEY.

JUST ONE MORE THING

To quote Peter Falk as Columbo, just one more thing to clear
up another of those little mysteries. The Equates on page 416 of
the E/A manual include VPUSH and VPOP. We thought these
%ght mean pushing and popping numeric values to and from a
stack in VDP RAM. We performed a little experiment using the
source code shown in the sidebar and, sure enough, VPUSH, exe-
cuted through XMLLNK, took the floating point number from
FAC and stashed it on a stack in VDP RAM. By clearing FAC,

VPUSH EQU >000E
VPOP EQU >0010
FAC EQU >834A

*

* CODE SECTION

-

DEF TEST
LWPI WS
BLWP GNUMREF
BLWP @XMLLNK

TEST

VDP PUSH
VDP POP
F.P. ACCUMULATOR

DEFINE ENTRY POINT

LOAD OUR WORKSPACE

GET PARAMETER (A FROM XB)
USE XML

DATA VPUSH TO PUSH FROM FAC ONTO STACK
CLR @FAC CLEAR FAC

BLWP @XMLLNK USE XML VECTOR

DATA VPOP TO POP VALUE A FROM STACK
BLWP @NUMASG RE-ASSIGN TO VARIABLE

LWPI >83EQ LOAD GPL WORKSPACE

B @>6A RETURN TO GPL INTERPRETER

*

* DATA SECTION

*

Ws DATA 0,1 PRELOADED REGISTERS 0 AND 1
BSS 28 REST OF WORKSPACE
END

then doing a VPOP and reassigning this value to an XB variable,
we proved that this worked. But don’t get too confident about
such things. If you’ve pushed a variable in this way and then re-
turned control to XB before coming back to POP the variable, the
chances are pretty good that you’ll have lost your value. This
happens because XB makes its own use of the VDP value stack,
so by the time you’re back in control, the pointers will have been
reset, and your original value on the stack will be gone.

Thus take a warning. You can use VPUSH to temporarily stash
the value of a floating point number, and it can be recovered as
long as your Assembly code is still in charge. However, if you re-
turn control to XB, you should first pop out that floating point
number and put it somewhere else, lest it get lost while XB is us-
ing this same stack. ;

We have a planned topic for next month which may be of some
interest to the non-programming public among our readers. We
have recently devised a way of taking an existing Option-3 object
file and converting it to an Option-5 program file without having
access to the original source code, and without doing any exotic
maneuvers with assembly. See you then!

Want to contact MICROpendium
by phone?

Call us Saturday mornings,
from 9 am. to noon, Central
Standard Time
The number is
512-255-1512

Page 14 MICROpendium/September 1994

Extended BASIC

Cardfile used to produce

¢

database using index card format

By LUCIE DORAIS
© 1993 Lucie Dorais

TI CARDFILE is an index card pro-
gram, a database with only two fields: the
title, or index, and the text. It’s not unlike
3xS5 index cards, but with the added facili-
ty of automatic editing, sorting and print-
ing. CARDEDIT, a companion program,
is a much better text editor (I kept the
CARDFILE editor basic to save memory);
CARDUTIL, another companion pro-
gram, is a collection of utilities to change
the size of the cards, merge, split and clean
files, etc.

From the main menu, you can start a
N)ew file or O)pen an existing one, and
Q)uit. The cards can be B)ig (18 screen
lines of text) or S)mall (9 lines); so if all
you need can fit in nine lines, like an ad-
dress book, you should use the small size
to save space on the disk (each small
record uses about one sector for the data,
the big one just over two); the index, i.e.
the title list and the pointers to the data
records, is kept in a separate file. Each file
has space for about 275 cards (if you have
the disk space of course); the program
does no checking of your available disk
space, so it will be up to you to stay inside
your system’s limits.

When you load an existing file, you can
A)dd to it, F)ind a specific card, S)ort the
titles, P)rint all or part of the file and move
from one card to another. When the title of
the card you want to see is displayed on
the screen, you can V)iew the card, then
you can E)dit, D)elete or P)rint it, and
again move to another card. Since the ti-
tles are kept in memory, moving through
the file in the File menu is faster than mov-
ing in the Card menu, because each new
card has to be read from disk.

The files, both RELATIVE and DIS-
PLAY (so we can use LINPUT to read
them: see XB manual at LINPUT), are or-
ganized as follows:

(Note that the Last RECord saved will
not necessarily be the one corresponding
to the total number of cards, because when

you start deleting and adding, it will be
different, see Fig. 1.)

NOTE: If you don’t have a printer, re-
move the references to file #3 in lines 150
(OPEN), 220 and 1030 (CLOSE). Be-
cause the original program was published
over two months, the comments on SORT
(lines 540-600), PRINT (lines 610-670,
870, 1200-1230) and DELETE A CARD
(lines 775-860 and 680-720) are placed af-
ter the comments on the main portion of
the program and the subroutines.

We start with the safety measures and
the DIM; in line 140, char. 136 is an oc-
tothorpe (#) in inverse video. The charac-
ters defined in line 170 using the strings in

CT$ array for faster processing; then the
delete list is retrieved from the /D file. ER-
CARD erases the card and GOSUB 1000
modifies the screen display, both accord-
ing to the card size.

The File menu is displayed by lines
310-340, with info on the file name and
sort status. GOSUB 960 uses the IMAGE
TOPS to display the title of the first card
and its card number, preceded by the in-
verted “#”. (This number is the order of
the card in the file, not the actual data
record number for the corresponding data
in the /D file, which is permanent; the card
numbers will, of course, change when you
sort or delete cards.)

Fig. 1

> > > > >

2) DATA file: suffix “/D”, FIXED 252:
REC(0): xxx nnnnnnnnnnnn. . .

XXX evevnv e

. nnnnnnnnnnnn. . .

REC(1-n): data, one record / card if BIG=0

two records / card if BIG=1

...... no/yes {(del list) ‘F”

list (4 char/rec)

line 120 are the contours of the card;
TOP$ and INDS$ in line 140 are IMAGEs
to be used later. The main menu is found
in lines 190-220 (D$ is the default data
disk number), then the N)ew file portion:
SUB ASKEF asks for the filename, OPIF
and OPDF open the Index and Data files
respectively. Then you are asked for the
size, which will be kept in the BIG vari-
able. All variables are reset by line 260
(DREC,LREC=minus BIG, therefore - 1
for a big file, so that the next record will be
1 when incremented by 2 in line 380);
DELS is the deleted cards list, empty for
now.

When you O)pen an existing file, the er-
ror trapping routine will catch you if the
filename you give does not exist; since
naive Tex has already opened the files be-
fore it traps the error, the two new files
will be erased (line 1020) before control is
returned to you. If you gave a good file-
name, the file information is read from the
/1 file by line 290, and the titles put in the

You fill a card (lines 360-480) when you
start a N)ew file or when you A)dd to an
existing one; C$ is a flag to tell Tex where
to return when you’re finished; of course
the sort flag is reset since adding new titles
will likely upset their order if any. The
SUB ACC accepts a string at a row and
pads it with spaces, for a total length of 23
for titles, 28 for text lines. ASCII 47 is the
“/” you must enter to terminate the A)dd
function. Line 380 increments the Number
of cards, the Current Card number (last one
of course) and GOSUBs 960 to display the
new title and the card number. If the DELS
list is empty, the next record in the /D file
will also be the last one, and both are incre-
mented by one for a small card, by 2 fora
big one. Lines 390- 400 deal with a delete
list if there is one.

The title is then formatted with its c4]
responding data record number (pointer)
and promptly printed to the /I file as well
as being kept in the CT$ array. The text of

(See Page 15)

MICROpendium/September 1994 Page 15

CARDFILE—

P (Continued from Page 14)

the card is then entered; for fast disk ac-
cess, it will be saved in one or two strings
of 252 characters each (nine screen lines);
each screen line is accepted and padded
with spaces. You must end with a “/”, un-
less you are on the last line; that character
is replaced with ASCII 127, which shows
as a blank on screen, so that when you
view a card it will not display, but will be
there to put back a “/” on screen when you
edit the card later. The value of P in line
430 is 1 or 2 according to the screen row,
to fill the first and, if the card is big, the
second string. You can then redo the title
and the data if they are not OK. This is
where the term “basic” applies to the edi-
tor: you have to ACCEPT all lines one by
one again. CARDEDIT is faster, with the
ability to Insert or Delete lines, and Refor-
mat somewhat. If the data is OK, it is
printed to the /D file at record number
DREG; if the card is big, the second part is
printed at record DREC+1.

Lines 490-510 are to F)ind a card: enter

e first letter(s) of the index title (for ex-
ample, in a sorted address file, you can
reach the Cs by typing only “C”); if Tex
finds a card, it goes to the V)iew function
immediately, bringing the current card C
value; if not, it beeps at you. Line 520
moves you quickly to the T)op (first card)
or B)ottom (last) of the file, while line 530
moves forward (>) or backward (<); no
need to press FCTN, SUB AKEY looks
for“.” and “,”. All this is only at the index
titles level, very quick because the titles
are in memory. Line 730 will save the file
information to the /I and /D files (GOSUB
990) before closing them and returning
you to the main menu.

Lines 740-920 will work on an individ-
val card. When you press “V” in the file
menu, or you have used F)ind, the screen
becomes white, the current title and card
number are shown, and Tex reads the cor-
responding Data RECord kept in the right
portion of the title in the array. Being nice,
it will read the data from the disk and dis-
play it, according to the card size (GOSUB

. R30). The menu is simple: E)dit, D)elete,
I

Arint, M)enu, and “< >” to move forward
or backward. Edit is as basic as above, but
Tex will replace the end of text character
127 with a “/” (line 790) so you don’t have

to type it again, unless you add lines; Tex
also resets the SORTS flag if your new ti-
tle is different from the old one, just in
case... then you are sent back to line 410 to
edit the text lines; flag C$ tells Tex to
come back here when you are finished.
Line 840 is used for moving among the
cards; as said above, this takes longer here
because each card has to be read from
disk.

Notes on some subroutines: Line 970 is
used with S)ort a file and D)elete a record
(see below); in line 990, the variable CL is
set to one when Tex needs to close the files
(upon exiting to main menu or before
deleting bad filenames). The Escape sub in
line 1025 is used by SORT, PRINT and
DELPACK functions.

In the error trapping routine (lines
1010-1030), the K reports the error num-
ber, the L the line number; an error num-
ber 130 is always an 1/O error, in this pro-
gram it should happen only when you try
to open a file that does not exist, so we RE-
TURN 270 after having closed and deleted
the files opened by Tex by error; any other
error will cause Tex to print the file infor-
mation to the disk before it closes the files
and breaks.

So that you don’t have to worry about
the Alpha Lock key, in the user-defined
SUB AKEY (lines 1120-1150) a formula
transforms any lower case letter into its
upper case; in the sub ASKF, there are two
dummy CALL KEYs: CALL KEY(3,...)
causes Tex to change all lowercase to up-
percase when entering a filename; to be
able to accept lowercase later, another
dummy CALL KEY(5,...) resets Tex to
full BASIC Keyboard; our standard value
of CALLKEY(O0,..) simply tells Tex to use
the last keyboard value used, which would
be 3 if not for the second CALL KEY. In
the SUB ASKEF, there are eight spaces be-
fore the “/D”, for the filename.

SORT (lines 540-600): it is the proven
and fast (for TI) Shell Sort (Regena’s
Guide to the TI99/4A, p. 295); we reuse
some variables that are not used otherwise
in this portion of the program (P,S K ,X).
The new title list is saved to disk (GOSUB
970), starting with the first card (S=1, line
570).

PRINT (lines 610-670, 870, sub 1200-
1230): no word wrap (lines are identical to

those on screen), but some fancy typeset-
ting, and automatic page breaks between
cards.

You can print all cards (default 1 and N
in line 620) or a selected portion. The
screen becomes pale red, and each printed
card’s title and number are displayed at
the top (GOSUB 960); the data is retrieved
from disk for each card (GOSUB 930).
Lines 640-660 control page length (kept in
L): by finding the “end of data marker”
(ASCII 127), Tex calculates the number of
lines needed in ND (data lines, plus two
for the title and three empty lines after the
card: see SUB PCARD below); if there is
amarker in the first (or unique if small file)
string, Tex goes immediately to line 660:
the length of text (position of marker mi-
nus it) is divided by 28; if not, that portion
has nine lines, so ND becomes 14 and Tex
looks for the marker again. If there is none
(the string has nine lines, or by accident
there is no marker), P=253 makes sure that
ND will calculate nine lines for the
CD8$(2) string. If the next card would
cause page length L be beyond 62 lines,
Tex prints a page break (12) and resets it-
self. Each card is then printed by the SUB
PCARD; after a last page break, the first
printed card title (C=S) is shown on
screen.

You can also print a card while V)iew-
ing it, but no page length checking (line
870). Finally, the SUB PCARD itself,
lines 1200-1230: note that the CD$() array
is passed whole to the D$() one.

The title and a line of “-” are printed in
Bold (CHR$(27), ESCAPE, followed by
“E” to start Bold and “F” to end it: TI/Ep-
son codes, check your manual for other
printers), then the card number preceded
by a“>” at the right, then the text itself, in-
dented to the right to make the printed
cards easier to read; the text has to be tak-
en from the CDS$ strings by chunks of 28
char.; when Tex finds the end marker, it
goes to line 1230 to put three empty lines
before exiting the sub. (NOTE: Since the
cards marked for deletion are also printed,
you might want to use the D)el Pack func-
tion from the main menu to get rid of
them.)

DELETE A CARD (lines 775-860,
680-720): Each card has to be deleted in-

(See Page 16)

BUY - SELL - TRADE
HARDWARE - SOFTWARE

NEW Tl Buyers Guide $2

WANTED; Disk Manager 2 & Yahatzee
Cartnidges, T/ Recorders, Geneve, Hard Disk
Controllers, RS-232 Cards & Rare ltems!

Dual 2 HT Kit
complete with
cables, screws,
drill template &
instructions $59

PE Box Complete $129
Corcomp DD Cont $180
Star NX-1001 Printer $175
2400 Baud Modem $79

Dual %2 Ht Ext Kit with case $125

140 Plato Titles

TI-99/4A Console $45
SC PIO Cables $2
Serial Cables 2 for $1
Modem Cable $20

Banx Box 160 disk holder $15

Rare - Myarc Micro

Expansicn with 32k,
PlO, RS232, 2 2 Ht
DD Drives in 1 case.
720k Storage! $250

800-471-1600

(Nationwide & Canada ORDERS ONLY)

414-672-1600 Local/Tech Support

Huge Genuine Tl Inventory Since 1982

Competition Computer
2219 S Muskego Milwaukee W1 53215 Fax 414-672-8977

Open Daily 9-5 Sat 10-3

Bankcards, Discover, Checks & UPS/COD

Page 16 MICROpendium/September 1994

CARDFILE—

(Continued from Page 15)
dividually, from the card menu (you must
V)iew it first). Since the files can get pretty
big, the program keeps track of the deleted
records so that they can be used again
(CARDUTIL has a C)lean file function);
remember, the Data RECord number is al-
ways appended to the card title, and the or-
der of the cards (the CT$ array) is totally
independent in numbering. The DELETE
function is done in two parts: first you
“mark the card for deletion”: a special
code, “*D*”, is inserted in the title and is
visible on screen; you can always change
your mind (recall a card) by pressing
E)dit: clever Tex knows that it is deleted,
and line 775 will GOTO 850 to edit only
the title, after erasing the *D* from screen
so that it is not ACCEPTed into A$.

The deleted cards, still part of your files,
can be V)iewed, S)orted and P)rinted like
any other, so at some point you will want
to R)emove them: this is done from the file
menu (lines 680-720).

The DELS$ (delete) list is retrieved if
there is one already, otherwise initiated to
“yes” (line 690). Tex reads all the cards; if
the current card X is not marked for dele-
tion (line 700), the “good cards” counter C
is incremented and the next title in line,
CT$(C), is filled with the “good card” title
(this removes the deleted card title from
the title array). If the card is marked for
deletion, its corresponding Data RECord
is extracted from the title, appended to the
DELS list, and Tex writes “*del*” on the
disk (line 710). At the end of the index file,
the total number of cards N takes the value
of the highest “good card” number C, and
the new DELS list is promptly printed to
disk (GOSUB 1050). Finally, Tex saves
the redone title list to disk; to save time,
GOSUB 970 starts at the S value: here it
has the value of the first deleted card en-
countered in the loop, thanks to the S=N+1
in line 690, and to the MIN(S,X) function
in line 710.

BS,K, P, S ::‘e\‘

150 GOTO 170 ::

CALL KEY :: CALL CLEAR :: CA
LL SOUND :: CALL SCREEN :: C
ALL CHAR :: CALL VCHAR :: !@
P- 1091

170 CALL CHAR(128,AS$&CS$S&BS, 1
29,A$&DS&BS, 130, BS&CS&AS, 131
, BS&DS&AS, 132, BS&CS&BS, 133, B
$&DS&BS, 134, AS&"FFFF"&AS, 135
,BS&BS&"1818") 1078
190 CALL CLEAR :: CALL SCREE
N(12):: CALL VCHAR(1,2,135,2
2):: CALL VCHAR(1,31,135,22)
1037
200 CALL LINE(1,128,134,129)
: CALL LINE(3,132,134,133):
: CALL LINE(22,130,134,131)!
229
210 DISPLAY AT(2,11):"TI CAR

D" :: DISPLAY AT(6,11):"F)il
e": :85&"E)dit": :S$&"U)til"
:SS&"Q)uit” 1226

220 CALL KEY(0,K,S):: IF S=0
THEN 220 ELSE B$=CHRS (K) : :
IF ASC(B$)>96 THEN B$=CHRS (A
SC(B$)-32) 1184 N
230 P=POS("FEUQ",BS$,1):: IF ~
P=0 THEN CALL SOUND(100, 200,
0):: GOTO 220 1248

240 ON P GOTO 250,260,270,28
0 1213

250 CALL D("FILE"):: RUN "DS
K1.CARDFILE" 1124

260 CALL D("EDIT"):: RUN “DS
K1.CARDEDIT" !136

270 CALL D("UTIL"):: RUN "DS
K1.CARDUTIL" !184

280 CALL CLE2ZR :: END 1222
1060 1@P+ ==== user-def subs

===== 1187
1070 SUB LINE(R,A,B,C):: CAL
L HCHAR(R,2,A) :: CALL HCHAR(
R,3,B,28):: CALL HCHAR(R, 31,
C):: SUBEND !148
1080 SUB D(AS):: DISPLAY AT(
24,5) :"Loading CARD"&AS&". ..
" :: SUBEND !181

CARD

CARDEDIT

100 | ****x CARD) ****%], Dor
als/Ottawa UG/May 1993 1068

120 A$="000000" :: B$="18181
8" :: C$="1F1F" :: D$="F8F8"
:: SS=RPTS(" ",10)!1088

100 | ****% CARDEDIT ****% Py
.Dorais/Ottawa UG/March 19¢ t
1046
110 ON WARNING NEXT ::
(See Page 17)

ON ER

Page 18 MICROpendium/September 1994

CARDFILE—

(Continued from Page 17)

740 AS=SEGS$(AS,1,Y+1)&SEGS (B
$,1,P-1):: CALL PAD(AS,28) !
add word 1048

750 B$=SEG$(B$,P+1,28):: CAL
L PAD(BS,28)! remove word !2
50

760 IF B$<>E$ THEN Y=29 :: G
OTO 720 ! continue to look f
or words !007

770 FOR Y=X+1 TO 9+B9 :: LS (
Y)=L$(Y+1):: NEXT Y :: GOTO
710 | rewrite data !117

780 L$(X)=AS$:: L$(X+1)=BS$

: NEXT X :: L$(10+B9)=E$ I'p
rocess next two lines 1129
790 FOR X=R-3 TO 9+B9 :: CAL
L D(X+3,L$(X)):: NEXT X :: C
ALL S(5):: GOTO 570 1090800

! ==== edit end ==== 1200
810 CALL BIN(WS$,ES$,32):: CAL
L D(23,""):: CALL D(24, "Savi
ng the card...")!203

820 FOR X=9+B9 TO 1 STEP -1
:: IF L$(X)=E$ THEN LS (X+1)=
CHR$(127)&SEG$(E$,1,27):: GO
TO 840 1118

830 NEXT X ! put end marker
1227

840 CD$(1),CD$(2)="" :: FOR
X=1 TO 9+B9 :: Y=1-(X>9)! re
do data strings 1119

850 CD$(Y)=CD$(Y)&LS(X):: NE
XT X 1253

860 PRINT #2,REC(DREC):CDS(1
):: IF BIG THEN PRINT #2,REC
(DREC+1) :CD$(2) 1050

870 CALL ERCARD(BIG) :: GOTO
300 ! back to file menu !037
920 ! ===== subroutines ====
= 1008

930 DREC:VAL(SEG$(CT$(C),24,
4)):: LINPUT #2,REC (DREC) :CD
$(1l):: IF BIG THEN LINPUT #2
+REC(DREC+1) :CD$(2) : : RETURN
ELSE RETURN !073

960 DISPLAY AT(2,1) :USING TO
P$:SEG$(CT$(C),1,23),C :: RE
TURN !084
990 CLOSE #1
RETURN !187
1000 IF BIG THEN RETURN ELSE
CALL HCHAR(14,1,32,288):: C
ALL LINE(13,130,134,131):: R
ETURN !029

:: CLOSE #2

1010 CALL ERR(K,S,P,L):: IF
K<>130 THEN 1030 ELSE CALL &
(2):: CALL D(19," ** BAD FIL
ENAME **") 1239

1020 GOSUB 990 :: DELETE D$&
“/I" :: DELETE D$&"/D" :: RE
TURN 270 1006

1030 PRINT "Error";K;"in lin

e";L :: GOSUB 990 :: BREAK !
085

1060 !@P+ ==== user-def subs
===== !187

1070 SUB LINE(R,A,B,C):: CAL
L HCHAR(R,2,3):: CALL HCHAR (
R,3,B,28):: CALL HCHAR(R, 31,
C):: SUBEND !148

1080 SUB D(R,AS):: DISPLAY A
T(R,1):A$:: SUBEND !073
1090 SUB PAD(AS,L):: AS=AS$&R
PT$ (" ",L-LEN(A$)):: SUBEND
1156

1100 SUB ERCARD(B):: CALL D(
2,""):: FOR R=4 TO 9*B+12 ::
CALL D(R,""):: NEXT R :: CA
LL D(24,""):: SUBEND !218
1110 SUB S(N):: CALL SOUND(1
00,N*100,0):: SUBEND !172
1120 SUB AKEY (A$,P)!108

1130 CALL KEY(0,K,S):: IF S=
0 THEN 1130 ELSE B$=CHRS (K) :
: IF ASC(BS$)>96 THEN B$=CHRS
(ASC(B$)-32)1074

1140 P=POS(A$,BS$,1):: IF P=0
THEN CALL S(2):: GOTO 1130
1156

1150 SUBEND !168

1160 SUB ASKF(A$,D$):: DISPL

AY AT(17,2) :A$&" FILE: "&SEG
$(D$,1,5)&" /D" :: CA

LL KEY(3,K,S) 1025

1170 ACCEPT AT(17,16)SIZE(-1
)BEEP:D$:: ACCEPT AT(17,18)
SIZE(-8):F$:: D$="DSK"&DS&"
."&F$:: CALL KEY(5,K,S):: S
UBEND !187

1180 SUB OPIF(DS$):: OPEN #1:
D$&"/I",DISPLAY ,FIXED 27,RE
LATIVE :: SUBEND !164

1190 SUB OPDF(D$) :: OPEN #2:
D$&" /D", DISPLAY ,FIXED 252,R
ELATIVE :: SUBEND !204

1200 SUB BIN(W$,A$,C):: WS=A
$:: CALL HCHAR(23,2,C):: SU
BEND 1023

CARDFILE 4

100 | ****% CARDFILE ***%* [,
-Dorais/Ottawa U&/March 1993
1040

110 ON WARNING NEXT :: ON ER

ROR 1010 :: DIM CT$(275),CDS$

(2)!186

120 A$="000000" :: BS="18181

8" :: C§="1F1F" :: D$="F8F8"
: 88=" v 1209

130 END$="END with a '/*' on
empty line" :: CMEN$="E)dit
D)el P)rint M)enu > <" 1006
140 TOP$=RPT$("#",23)&CHR$(1
36)&"HHHA" :: INDS="# ### ##
#" :: CALL CHAR (136, "FFD7
D783D783D7D7") 1058

150 OPEN #3:"PIO" :: GOTO 17
0 :: BIG,C,CL,DEL$,DREC,K,L,
LREC,N,ND,P,R,S,SORT$,T$,X !
002

160 CALL HCHAR :: CALL VCHAR
t: CALL GCHAR :: CALL CLEAR
: CALL SCREEN :: CALL ERR

1@P- 1022 f
170 CALL CHAR(128,A8&CS$&BS, 1T 7
29,AS&DS&BS, 130, BS&CS&AS, 131
«B$&DS&AS, 132, BS&CS&BS, 133, B
$&D$&B$,134,A$&"FFFF“&A$,135
BS&BS&"1818") 1078
180 ! ====== main menu =====

1252
150 CALL CLEAR ::

:: CALL SCREEN(4)
HAR(1,2,135,22)::
(1,31,135,22)1170
200 cALL LINE(1,128,134,129)
:: CALL LINE(3,132,134,133):
: CALL LINE(22,130,134,131)!
229
210 DISPLAY AT(2,9) :"TI CARD
FILE" :: DISPLAY AT(6,7) :"N)
ew file": :S$&"O)pen a fil
e": : :S$&"Q)uit" 1251
220 CALL AKEY ("NOQ",P):: IF
P=3 THEN CALL CLEAR :: CLOSE
#3 :: END ELSE IF P=2 THEN
270 1010
230 CALL ASKF(" NEW",DS):: C
ALL OPIF(DS):: CALL OPDF(D$)G?
! new file 1111 K
240 CALL D(19," cCard Size:
S)mall (9 1i.)"):: CALL D(2

(See Page 19)

D$="DSK1."
:: CALL VC
CALL VCHAR

Page 18 MICROpendium/September 1994

CARDFILE—

(Continued from Page 17)
740 A$=SEG$(A$,1,Y+1)&SEG$(B
$,1,P-1):: CALL PAD(AS, 28) !
add word !048
750 B$=SEGS$(BS$,P+1,28):: CAL
L PAD(BS$,28)! remove word !2
50
760 IF B$<>E$ THEN Y=29 :: G
OTO 720 ! continue to look f
or words 1007
770 FOR Y=X+1 TO 9+B9 :: L§(
Y)=L$(Y+1l):: NEXT Y :: GOTO
710 ! rewrite data 1117
780 L$(X)=A% :: L$(X+1)=B$
: NEXT X :: L$(10+B9)=E$! p
rocess next two lines 1129
790 FOR X=R-3 TO 9+B9 :: CAL

L D(X43,L$(X)):: NEXT X :: C
ALL S(5):: GOTO 570 1090800
! ==== edit end ==== 1200

810 CALL BIN(WS$,E$,32):: CAL
D(23,""):: CALL D(24, "Savi
ng the card...")!203
820 FOR X=9+B9 TO 1 STEP -1
: IF L$(X)=E$ THEN L$ (X+1)=
CHR$(127)&SEG$(E$,1,27):: GO
TO 840 !118
830 NEXT X ! put end marker
1227
840 CDS$(1),CDS(2)="" :: FOR
X=1 TO 9+B9 :: Y=1-(X>9)! re
do data strings !119
850 CD$(Y)=CD$(Y)&LS (X):: NE
XT X 1253
860 PRINT #2,REC(DREC) :CD$ (1
):: IF BIG THEN PRINT #2,REC
(DREC+1) :CD$(2) 1050
870 CALL ERCARD(BIG):: GOTO
300 ! back to file menu 1037
920 ! ===== subroutines ====
930 DREC=VAL(SEG$(CTS$(C), 24,
4)):: LINPUT #2,REC(DREC) :CD
$(1):: IF BIG THEN LINPUT #2
,REC(DREC+1) :CD$§(2) : : RETURN
ELSE RETURN !073
960 DISPLAY AT(2,1) :USING TO
P$:SEG$(CT$(C),1,23),C :: RE
TURN !084
990 CLOSE #1
RETURN 1187
1000 IF BIG THEN RETURN ELSE
CALL HCHAR(14,1,32,288):: C
ALL LINE(13,130,134,131):: R
ETURN 1029

: CLOSE #2

1010 CALL ERR(K,S,P,L):: IF
K<>130 THEN 1030 ELSE CALL S
(2):: CALL D(19," ** BAD FIL
ENAME **") 1239

1020 GOSUB 990 :: DELETE D$&
"/I* :: DELETE D$&"/D" :: RE
TURN 270 1006

1030 PRINT "Error";K;"in lin

e";L :: GOSUB 990 :: BREAK !
085

1060 !@P+ ==== user-def subs
===== 1187

1070 SUB LINE(R,A,B,C):: CAL
L HCHAR(R,2,A):: CALL HCHAR (
R,3,B,28):: CALL HCHAR(R, 31,
C):: SUBEND {148

1080 SUB D(R,AS$):: DISPLAY A
T(R,1):A$:: SUBEND (073
1090 sSuUB PAD(AS,L) : : AS=AS&R
PTS (" ",L-LEN(AS$)):: SUBEND
1156

1100 SUB ERCARD(B) :: CALL D(

2,""):: FOR R=4 TO 9*B+12 ::
CALL D(R,""):: NEXT R :: CA
LL D(24,“"):: SUBEND (218
1110 SUB S(N):: CALL SOUND(1
00,N*100,0):: SUBEND !172
1120 SUB AKEY (A$,P)!108

1130 CALL KEY(0,K,S):: IF S=
0 THEN 1130 ELSE B$=CHRS (K) :
: IF ASC(B$)>96 THEN B$=CHRS
(ASC(B$)-32) 1074

1140 P=POS(AS$,BS,1):: IF P=0
THEN CALL S(2):: GOTO 1130
1156

1150 SUBEND !168

1160 SUB ASKF (AS,DS$) :: DISPL

AY AT(17,2):A8&" FILE: "&SEG
$(DS$,1,5)&" /D" :: CA

LL KEY(3,K,S) 1025

1170 ACCEPT AT(17,16)SIZE(-1
)BEEP:D$:: ACCEPT AT(17,18)
SIZE(-8):F$:: D$="DSK"&D$&"
."&F$:: CALL KEY(5,K,S):: S
UBEND !187

1180 SUB OPIF(D$):: OPEN #1:
D$&"/I",DISPLAY ,FIXED 27,RE
LATIVE :: SUBEND !164

1190 SUB OPDF(D$):: OPEN #2:
D$&" /D", DISPLAY ,FIXED 252,R
ELATIVE :: SUBEND !204

1200 SUB BIN(WS$,A$,C):: WS=A
$:: CALL HCHAR(23,2,C):: SU
BEND 1023

CARDFILE -9

100 | ***** CARDFILE **%*x L
.Dorais/Ottawa U&/March 1993
1040

110 ON WARNING NEXT ::

ON ER

ROR 1010 :: DIM CT$(275),CD$

(2)1186

120 A$="000000" :: B$="18181

8" :: C$="1F1F" :: D$="F8F8"
: S$=" " 1209

130 END$="END with a '/' on
empty line" :: CMEN$="E)dit
D)el P)rint M)enu > <" 1006
140 TOP$=RPT$(“#“,23)&CHR$(1
36)&"####Y INDS="# ### ##
#" :: CALL CHAR (136, "FFD7
D783D783D7D7") 1058

150 OPEN #3:"PIO" :: GOTO 17
0 :: BIG,C,CL,DELS,DREC,K,L,
LREC,N,ND,P,R,S,SORT$,T$,X !
002

160 CALL HCHAR :: CALL VCHAR
:: CALL GCHAR :: CALL CLEAR
:: CALL SCREEN :: CALL ERR

1@p- 1022 "

170 caLL CHAR(IZB,A$&C$&B$,1’

29,A$&D$&B$,130,B$&C$&A$,131

,B$&D$&A$,132,B$&C$&B$,133,B

$&D$&B$,134,A$&"FFFF"&A$,135

. BS&BS&"1818%) 1078

180 ! ====== main menu =====
1252

190 CALL CLEAR :: DS="DSK1l."
:: CALL SCREEN(4):: CALL VC

HAR(1,2,135,22):: CALL VCHAR
(1,31,135,22)1170

200 CALL LINE(1,128,134,129)
: CALL LINE(3,132,134,133):
: CALL LINE(22,130,134,131)!

229

210 DISPLAY AT(2,9):"TI CARD

FILE" :: DISPLAY AT(6,7):"N)
ew file": :S$&"0O)pen a fil
e": : :S$&"Q)uit* 1251

220 CALL AKEY ("NOQ",P):: IF
P=3 THEN CALL CLEAR :: CLOSE
#3 :: END ELSE IF P=2 THEN
270 1010
230 CALL ASKF (" NEW",DS$):: C
ALL OPIF(D$):: CALL OPDF(DS)'§¢
! new file 1111 g
240 CALL D(19," cCard Size:
S)mall (9 1li.)*):: CALL D(2
(See Page 19)

MICROpendium/September 1994 Page 19

CARDFILE—

(Continued from Page 18)
0,38%&88&" B)ig (18 1i.)")!
004
250 CALL AKEY("SB",P)::
P-1 :: GOSUB 1000 !060
260 N,C=0 :: DREC,LREC=-BIG
:: DEL$="no" :: GOSUB 1050 :
: GOTO 360 1207
270 CALL ASKF("OPEN",D$):: C
ALL OPIF(D$):: CALL OPDF(DS)
:: C=1 1103
280 LINPUT #1,REC(0):AS$:: B
IG=VAL(SEGS(A$,1,1)):: N=VAL
(SEGS$(AS,3,3)):: LREC=VAL(SE
GS(AS,7,4)) :: SORTS=SEGS (AS,
12,1) 1137
290 FOR X=1 TO N :: LINPUT #
1,REC(X):CT$(X):: NEXT X ::
GOSUB 1040 :: DEL$=SEGS (DELS
,1,4):: CALL ERCARD(BIG):: G
OSUB 1000 1013
300 CALL SCREEN(12)! ==== wo
rk with a file ==== 1112
310 DISPLAY AT(4,7):"V)iew":
SS&"A)dAd"&SS&"T)op" :S$&"F) in

B)ottom" 1135
320 DISPLAY AT(8,7):"S)ort

> forward":8$&"P)rint
< backward": :8$&"D)el Pack®
:S8&"E)xXit (Save file info)"
1108
330 GOSUB 960 :: CALL D(24,D
S&" Sorted: "&SORTS) 1241
340 CALL AKEY("AFSPVETB.,D",
P):: ON P GOTO 360,490,540,6
10,750,730,520,520,530,530,6

BIG=

80 1234

350 ! ===== fill a card ====

= 1039

360 Cg="" : CALL ERCARD(BIG
) :: CALL SCREEN(16):: SORTS=
“N" 1214

370 CALL D(24,ENDS$):: CALL A
CC(2,T$,23):: IF ASC(TS)=47

THEN 300 1123

380 C,N=N+1 :: CTS$(C)=TS$::

GOSUB 960 :: IF DELS="no" TH

EN DREC, LREC=LREC+1+BIG :: G
OTO 410 !107
390 GOSUB 1040 ::
EGS$ (DELS,5,4))
$,9,244) 1089
400 IF B$="" THEN DEL$="no"
:: GOSUB 1050 ELSE DELS$="yes
“&BS :: GOSUB 1050 1238
410 AS=STRS$ (DREC):: CT$(C),T
S=TS&RPTS(* ",4-LEN(AS))&AS
:: PRINT #1,REC(C):T$!126

DREC=VAL(S
: B$=SEGS$ (DEL

420 CD$(1),CD$(2)="" :: FOR

R=1 TO 9*(BIG+1):: CALL ACC({
R+3,A$,28):: IF ASC(A$)=47 T
HEN A$=CHR$(127) 1051

430 P=1-(R>9):: CD$(P)=CD$ (P
)&AS :: IF ASC(AS)=127 THEN

450 1139

440 NEXT R 1232

450 CALL S(5):: CALL D(24,"I
s it OK? (Y/N)"):: CALL AKEY
("YN",P):: IF P=1 THEN 470 !
194

460 CALL ACC(2,T$,23):: CALL
D(24,ENDS):: GOTO 410 ! red

1994 Tl FAIRS

: lng
planaing events for THGene
mu. Send information to M

o title/data 1223
470 PRINT #2,REC(DREC) :CD$(1
}):: IF BIG THEN PRINT #2,REC
(DREC+1) :CD$(2) 1050
480 IF C$="E" THEN 770 ELSE
360 1231
485 | ===== work on file ===
= 1136
490 CALL D(24, "Enter first 1
etter(s)"):: ACCEPT AT(2,1):
AS :: S=LEN(AS)! find 1083
500 FOR X=1 TO N :: IF SEGS$(
CTS$(X),1,8)=A$ THEN C=X :: G
OTO 750 ! found 1197
510 NEXT X :: CALL S(2):: GO
TO 330 ! not found !221
520 IF P=7 THEN C=1 ::
330 ELSE C=N ::
op/bottom 1255
530 IF P=9 THEN GOSUB 9240 ::
GOTO 330 ELSE GOSUB 950 ::
GOTO 330 ! move for/backward
1052
540 A$="SORT" :: GOSUB 1025
:: IF P=2 THEN 330 1224

GOTO
GOTO 330 ! t

550 CALL D(24,"... sorting .

."):: SORTS="Y" : P=1 ! so
rt 1236
560 P=2*P :: IF P<=N THEN 56
0 1232
570 P=INT(P/2):: IF P=0 THEN
S,C=1 :: GOSUB 970 :: GOTO
330 1210
580 FOR X=1 TO.N-P :: K=X !1
44

(See Page 20)

Page 20 MICROpendium/September 1994

CARDFILE—

(Continued from Page 19)

590 S=K+P :: IF CT$(K)>CT$ (S
)THEN A$=CTS$(K) :: CTS (K) =CT$
(S):: CTS(S)=AS :: K=K-P ::
IF K>0 THEN 590 !112
600 NEXT X :: GOTO 570 1251
610 AS="PRINT" :: GOSUB 1025

IF P=2 THEN 330 1038
620 CALL D(24,A$&" from Card
#1 to #"&STRS(N)) :: ACCEP
T AT(24,18)SIZE(-3):8 :: ACC
EPT AT (24,26)SIZE(-3):K 1013
630 CALL SCREEN(10):: L=0
FOR C=S TO K :: GOSUB 960
: GOSUB 930 1178

640 ND=5 :: P=POS(CD$(1),CHR
$(127),1):: IF P THEN 660 1
63

650 ND=14 P=POS (CD$(2),CH
R$(127),1):: IF P=0 THEN P=2
53 1160

660 ND=ND+(P-1)/28 :: L=L+ND
IF L>=63 THEN PRINT #3:C

HRS$(12):: L=ND !202

670 CALL PCARD(C,CT$(C),CDS$ (
) ,BIG):: NEXT C :: PRINT #3:
CHRS$(12):: C=8 :: GOTO 300 !
093

680 A$="PACK DELeted Cards"
: GOSUB 1025 IF P=2 THEN

330 1105
690 CALL D(24,"... packing .
.."):: C=0 :: S=N+1 :: IF DE

L$="yes " THEN GOSUB 1040 EL
SE DEL$="yes " 1154

700 FOR X=1 TO N :: B$=CT$ (X
):: IF SEG$(B$,20,3)<>"*D*»

THEN C=C+1 :: CT$(C)=B$:: @
OSUB 960 :: GOTO 720 1217

710 S=MIN(S,X):: B$=SEGS (BS,
24,4):: DEL$=DELS&BS :: DREC
=VAL(B$) : : PRINT #2,REC (DREC
)" *del*xn IF BIG THEN PRI

NT #2,REC(DREC+1) : "*del*" 10
52

720 NEXT X :: N=C :: GOSUB 1

050 :: GOSUB 970 :: GOTO 330
1106

730 CL=1 :: GOSUB 980 :: CL=

0 :: GOTO 190 ! close file,
go to main menu !127

740 ! ==== view cards, work
on them ==== 1141

750 CALL SCREEN(16)::
960 :: GOSUB 930 !213

GOSUB

760 CALL D(4,CD$(1)):: IF BI
G THEN CALL D(13,CD$(2)) 1108
770 CALL D(24,CMENS) : : CALL
AKEY ("EDPM.,",P):: ON P GOTO
775,840,870,820,830,830 117
8

775 IF SEGS (CT$(C),20,3)="*D
*" THEN 850 ! deleted card !
228

780 FOR R=4 TO 9*BIG+12 :: C
ALL GCHAR(R,3,K):: IF K=127
THEN CALL HCHAR(R,3,47):: GO
TO 800 ! put back the end /
1126

790 NEXT R ! no end / !014
800 CALL ACC(2,T$,23):: IF T
$<>SEG$(CT$(C),1,23)THEN SOR
T$="N" | change? 1024

810 CALL D(24,END$):: C$="E"
:: GOTO 410 1021
820 CALL ERCARD(BIG):: GOTO

300 ! back to file menu !037
830 IF P=5 THEN GOSUB 940
GOTO 750 ELSE GOSUB 950
GOTO 750 ! move > < 1095840
A$=SEG$(CT$(C),1,19)&“*D* "
: CALL S(3):: GOTO 860 ! ma
rk card for deletion 1089
850 CALL HCHAR(2,22,32,4) ::
CALL ACC(2,A$,23)! undelete
card (edit title) 1202
860 CTS(C)=A$&SEG$(CT$(C),24
,4):: PRINT #l,REC(C):CT$(C)
: GOSUB 960 : GOTO 770 !10
6
870 CALL D(24,"...printing..
."):: CALL PCARD(C,CTS$(C),CD
$(),BIG):: GOTO 770 ! print
card !034
920 ! ===== subroutines ====
= 1008
930 DREC=VAL (SEGS$ (CT$(C), 24,
4)):: LINPUT #2, REC (DREC) :CD
$(1):: IF BIG THEN LINPUT #2
+REC(DREC+1) :CD$(2) : : RETURN
ELSE RETURN !073
940 C=C+1 :: IF C<=N THEN RE
TURN ELSE C=N :: CALL S(2)::
RETURN ! forward !096
950 Cc=C-1 IF C>=1 THEN RE
TURN ELSE C=1 :: CALL S(2)::
RETURN ! backward 1004
960 DISPLAY AT(2,1) :USING TO
P$:SEG$(CT$(C),1,23),C :: RE
TURN 1084

970 CALL D(24,"... saving ne
W index..."):: FOR X=1 TO N

:: PRINT #l,REC(X):CTS(X)::

NEXT X 1099

980 PRINT #1,REC(0),USING IN
D$:BIG,N,LREC,SORT$ 1169

990 IF CL THEN CLOSE #1 :: C
LOSE #2 : RETURN ELSE RETUR
N 1135

1000 IF BIG THEN RETURN ELSE
CALL HCHAR(14,1,32,288):: C
ALL LINE(13,130,134,131):: R
ETURN 1029

1010 CALL ERR(K,S,P,L):: IF

K<>130 THEN 1030 ELSE CALL S
(2):: caLL D(19," ** BAD FIL
ENAME **4) 1239

1020 CL=1 :: GOSUB 990 :: CL
=0 :: DELETE DS&" /I : DELE
TE D$S&" /D" :: RETURN 270 !15
1

1025 CALL S(6)::
$&"2 (Y/N)")::

CALL D(24,A
CALL AKEY ("YN

",P):: RETURN 1017

1030 PRINT “Error";K;"in lin
e";L :: CL=1 :: GOSUB 980 Q
BREAK !020

1040 CDS$(1),CDS(2)="" :: INP
UT #2,REC(0) :DELS$:: RETURN
1024

1050 PRINT #2,REC(0) :DELS ::
: DEL$=SEG$(DEL$,1,4):: RE

TURN 1153

1060 !@P+ ==== user-def subs

===== 1187

1070 SUB LINE(R,A,B,C):: CAL

L HCHAR(R,2,A):: CALL HCHAR (

R,3,B,28):: CALL HCHAR(R, 31,

C):: SUBEND !148

1080 SUB D(R,A$):: DISPLAY A

T(R,1):AS$:: SUBEND !073

1090 SUB ACC(R,AS$,L):: ACCEP

T AT(R,1)SIZE(-L):A$:: AS=A

S&RPTS (" ",L-LEN(AS$)):: SUBE

ND 1149

1100 SUB ERCARD(B):: CALL D(
2,""):: FOR R=4 TO 9*B+12

CALL D(R,""):: NEXT R :: CA

LL D(24,""):: SUBEND !218

1110 SUB S(N) :: CALL SOUND(1
00,N*100,0):: SUBEND !172 QE‘

1120 SUB AKEY(AS,P) 1108

1130 CALL KEY(0,K,S):: IF S=

0 THEN 1130 ELSE B$S=CHRS (K) :
(See Page 21)

Rasae s e S

[:S(T$,l,23)!"

_: F$(4)="INCREASE"
"7 wcLEAN"

MICROpendium/September 1994 Page 21

CARDFILE—

(Continued from Page 21)
: IF ASC(B%)>96 THEN B$=CHR$
(ASC(BS)-32)1074

1140 P=POS(A$,BS,1):: IF P=0
THEN CALL S(2):: GOTO 1130
1156

1150 SUBEND !168

1160 SUB ASKF(AS$,D$):: DISPL

AY AT(17,2):AS$&" FILE: "&SEG
$(D$,1,5)&" /D" :: CA
LL KEY(3,K,S) 1025

1170 ACCEPT AT(17,16)SIZE(-1

)BEEP:D$:: ACCEPT AT(17,18)
SIZE(-8):F$:: D$S="DSK"&DS&"
J"&F$:: CALL KEY(5,K,S):: S

UBEND !187

1180 SUB OPIF(D$):: OPEN #1:
D$&"/I",DISPLAY ,FIXED 27,RE
LATIVE :: SUBEND !164

1190 SUB OPDF (D$) :: OPEN #2:
DS$&" /D", DISPLAY ,FIXED 252,R
ELATIVE :: SUBEND (204

1200 SUB PCARD(C,T$,DS$(),B):
: PRINT #3:CHR$(27)&"E "&SE
"&RPTS("-",30
") &CHRS (27) &"F >";C ! bold
title,crd # 1242
1210 FOR I=1 TO B+l ::
=1 TO 9 :: AS$=SEG$(DS$(I),28*
X-27,28):: IF ASC(AS$)=127 TH
EN 1230 ! data !081

1220 PRINT #3:° "&AS :: N
EXT X :: NEXT I !131

1230 PRINT #3 :: PRINT #3
PRINT #3 :: SUBEND 1237

FOR X

CARDUTIL

100 | ***%* CARDUTIL ***** L,
.Dorais/Ottawa UG/March 1993
1070

110 ON WARNING NEXT :: ON ER

ROR 1030 :: DIM CD$(2),ST(3)
,EN(3),ND$(3) 1207

120 A$="000000" :: B$="18181

8" :: CS="1F1F" :: DS="F8F8"
:: S6=" " 1209

130 F$(1)="MERGE"

SPLIT"

: FS$(2)="
:: F$(3)="DECREASE"

: F$(5)=
: F$(6)="ANALYZE" !
188

140 TOPS=RPTS("#",23)&CHRS (1
36) & HHEEY 1 INDS="# ### #4#
#" :: CALL CHAR(136, "FFD7

D783D783D7D7") 1058

150 GOTO 170 :: BIG,C,DELS,D

REC,K,L,LREC,N,P,R, S, SORTS, T

$,X,DDS$,DV,ES$,FM,N1,SPL, TN, Z
1062

160 CALL HCHAR :: CALL VCHAR
: CALL CLEAR :: CALL SCREE
N :: CALL ERR :: !@P- 1197

170 CALL CHAR(128,A$&CS&BS, 1
29,A8&DS&BS, 130, BS&CS&AS, 131
,BS&DS&AS, 132, BS&CS&BS, 133, B
$&DS&BS, 134, AS&"FFFF"&AS, 135
,B$&BS&"1818") 1078
180 ! ====== main menu =====
1252
190 CALL CLEAR :: D$="DSK1l."
: CALL SCREEN(4):: CALL VC
HAR(1,2,135,22):: CALL VCHAR
(1,31,135,22)!170
200 CALL LINE(1,128,134,129)
: CALL LINE(3,132,134,133):
: CALL LINE(22,130,134,131)!
229
210 DISPLAY AT(2,9):"TI CARD
UTIL" :: DISPLAY AT(6,7):"M)
erge files":S%&"S)plit a fil
e" 1128
220 DISPLAY AT(9,7):"D)ecrea
se size":88&"I)ncrease Size"
:88&"C) lean a file":8$&"A)
nalyze a file":S$&"Q)uit" !0
83
230 CALL AKEY("MSDICAQ",P)::
IF P=7 THEN CALL CLEAR :: E
ND 1117
240 CALL ERCARD(1)::
AT(2,10) :F$(P) ::
(P),1,4)1039
270 CALL ASKF(7,AS$,D$):: CAL
L OPIF(1,D$)!201
280 LINPUT #1,REC(0):A$:: B
IG=VAL(SEGS(AS$,1,1)):: N=VAL
(SEG$(AS,3,3)):: LREC=VAL(SE
GS(AS,7,4)):: SORT$S=SEGS(AS,
12,1) 1137
290 CALL SCREEN(15):: ON P G
oTO 310,410,610,610,620,760
1242
300 | ==== merge two files =
=== 1136
310 DD$=SEG$(D$,1,5):: CALL
ASKF (12, "from",DD$) :: CALL O
PIF(3,DD$):: INPUT #3,REC(0)
:A$:: IF VAL(SEGS$(AS$,1,1))=
BIG THEN 330 1084

DISPLAY
AS=SEGS$ (F$

320 CALL S(2):: CALL D(15,*T
hey are not the same size!")
:: CLOSE #1 :: CLOSE #3 :: G
OTO 910 !155

330 N1=VAL(SEG$(A$,3,3)):: S
ORT$=*N" :: Z=BIG :: DV=4 ::
CALL OPDF(2,D$):: CALL OPDF
(4,DD$) ! 005

340 FOR C=1 TO N1 :: LREC=LR
EC+BIG+1 :: N=N+1 !040

350 LINPUT #3,REC(C):T$:: G
OSUB 960 :: GOSUB 930 1029
360 GOSUB 970 :: CALL DPRINT
(1,2,N,T$,LREC,CDS$ (),BIG) {06
9

370 NEXT C :: CLOSE #3 :: CL

OSE #4 :: GOSUB 980 :: GOTO

190 1072

400 ! ==== split a file ====
1056

410 ST(1)=1 :: CALL D(9,"Fil

e has "&STR$(N)&" cards")::
CALL D(11,"Split in middle?

(Y/N)"):: CALL S(5):: CALL A

KEY ("YN", P) 1232

420 SPL=2 :: IF P=1 THEN FM=

INT(N/2):: EN(1)=FM :: ST(2)

=FM+1 :: EN(2)=N :: GOTO 460
1145

430 CALL D(13,"SPLIT from Ca
rd # to #"):: ACCEPT AT(1
3,18)SIZE(-3):FM :: ACCEPT A
T(13,26):L 1071

440 IF FM>1 AND L<N THEN SPL

=3 :: EN(1)=FM-1 :: ST(2)=FM
:: EN(2)=L :: ST(3)=L+1 ::
EN(3)=N :: GOTO 460 !175

450 IF FM=1 THEN EN(1)=L ::
ST(2)=L+1 :: EN(2)=N ELSE EN
(1)=FM-1 :: ST(2)=FM :: EN(2
)=N ! begin/end file 1035

460 CALL D(15, "New split fil

es:"):: ND$(1),ND$(2)=SEGS$ (D
$,1,5):: CALL ASKF(17,"sp 1*
,ND$(1)):: CALL ASKF(18,"sp

2",ND§(2)) 1082

470 CALL OPDF(2,D$):: Z=BIG
: DV=2 :: IF SPL=3 THEN ND$
(3)=NDS$ (1) 1175

480 FOR X=1 TO SPL :: CALL D
(20,* Copying to "&ND$ (X)) ::
IF X<3 THEN LREC=-BIG :: N=

0 ELSE LREC=L :: N=TN !127

490 CALL OPIF(3,NDS$(X)):: CA

(See Page 22)

Page 22 MICROpendium/September 1994

CARDFILE—

(Continued from Page 21)
LL OPDF(4,ND$(X)):: FOR C=8T
(X)TO EN(X):: N=N+1 1245500
LINPUT #1,REC(C):T$:: GOSUB
960 :: GOSUB 930 :: LREC,DR
EC=LREC+1+BIG :: GOSUB 970 !
101
510 CALL DPRINT(3,4,N,T$, DRE
C,CD$(),BIG):: NEXT C :: PRI
NT #3,REC(0),USING INDS :BIG,
N, LREC, SORTS 1042
520 PRINT #4,REC(0) :"no" ::

CLOSE #3 :: CLOSE #4 :: IF X

=1 THEN L=LREC :: TN=N !069

530 NEXT X :: GOSUB 990 :: @

OTO 190 1048

600 ! ==== decrease/increase
file size / clean file ====
1077

610 IF P~3=BIG THEN CALL S(5
):: CALL D(12, “No need to ch
ange size!"):: CLOSE #1 :: G
OTO 910 ELSE BIG=P-3 1229
620 LREC=-BIG :: Z=0 :: DV=2
: CALL OPDF(2,D$):: DD$=SE
G$(D$,1,5)&"*"&SEG$(D$,7,7):
: CALL OPDF(4,DDS$):: IF P=5
THEN 640 !205
630 IF BIG=0 THEN E$=RPTS("
',28)ELSE CD$(2)=CHR$(127)&R
PTS(" ",251) 1255

640 FOR C=1 TO N :: LREC=LRE
C+1+BIG :: LINPUT #1,REC(C):
T$:: GOSUB 960 :: GOSUB 930

:: GOSUB 970 !'156

650 IF BIG OR P=5 OR POS (CD$
(1),CHR$(127),1)THEN 670 ELS
E 8=225 1069

660 IF SEG$(CD$(1),S,28)=E$
THEN S=S-28 :: GOTO 660 ELSE
CD$(1)=SEG$(CD$(1),1,S+27)&
CHR$ (127) 1015
670 CALL DPRINT(1,4,C, TS, LRE
C,CD$(),BIG):: NEXT C 1248
680 GOSUB 980 :: PRINT #4,RE
C(0) :"no" :: CLOSE #4 :: IF
P=5 THEN 700 ELSE CALL D(11,
“INDEX FILE modified. ") 1143
690 AS="/D" :: DISPLAY AT(14
;1) :"To use NEW DATA FILE, ":
:"1) erase "&DS&AS$: :%2) r
ename "&DD$S&AS:SS&" to "&DS&
AS :: GOTO 910 !17%
700 CALL D(11, " Cleaning ind
ex file..."):: CALL OPIF(1,D

$):: CALL OPIF(3,DD$)!019

710 FOR X=0 TO N :: LINPUT #
1,REC(X) :A$:: PRINT #3,REC(
X):A$:: NEXT X :: CLOSE #1

: CLOSE #3 1088
720 DISPLAY AT(14,2):"The cl
ean files are:" :S$&DDS&" /I":
S$&DD$&" /D" : :* They can be
used now, or renamed (fir

st delete the old files)."
1069

730 GOTO 910 1224

750 | ==== analyze a file ==

== 1000

760 CALL ERCARD(1):: CALL OP

DF(2,D$):: GOSUB 1040 :: CAL

L D(2,D$)!175
770 DISPLAY AT(5,1) :USING "#
cards"&S$&S5&SS&" ## lin
es of data"&S$&S$&" # sorted
":N,9+9*BIG, SORTS 1073
780 A$="DELETE LIST: " :: IF
ASC(DELS$) =110 THEN DISPLAY
AT(9,1) :A$&"no" ELSE DISPLAY
AT(9,1):A$&“yes":SEG$(DEL$,
5,248) 1117
790 CALL S(5):: CALL D(24,"S
EE Titles and DRECs? (Y/N)")
:: CALL AKEY("YN",P):: IF P=
2 THEN GOSUB 990 :: GOTO 190
1242
800 CALL ERCARD(1):: S=0 ::
DISPLAY AT(2,1):D$;TAB(25);"
DREC" 1064
810 FOR X=1 TO 18 :: IF X+S<
=N THEN LINPUT #1,REC(X+8) :A
$ ELSE AS$="" :: K=99 1196
820 CALL D(X+3,A8):: NEXT X
:: IF K=99 THEN GOSUB 990
GOTO 910 !066
830 CALL S(5):: CALL D(24, "M
ORE? (Y/N)"):: CALL AKEY ("YN
",P):: IF P=2 THEN 190 1102
840 S=S+18 :: CALL D(24,""):
: GOTO 810 1153
910 CALL D(24, "Press any key
-.."):: CALL KEY(0,K,S):: IF
S=0 THEN 910 ELSE 190 !152
920 ! ===z=== subroutines ====
= 1008
930 DREC=VAL (SEGS$(T$,24,4)) :
: LINPUT #DV,REC(DREC):CD$(1
):: IF Z THEN LINPUT #DV, REC
(DREC+1) :CD$(2) : : RETURN ELS
E RETURN 1028

960 DISPLAY AT(2,1) :USING?O‘

P$:SEG$(T$,1,23),C :: RETURN
1097

970 A$=STR$(LREC):: TS$=SEGS (

T$,1,23)&RPTS (" ",4-LEN(AS))

&AS :: RETURN 1195

980 PRINT #1,REC(0),USING IN

D$:BIG, N, LREC, SORTS {169

990 CLOSE #1 :: CLOSE #2 HH

RETURN !187

1000 IF BIG THEN RETURN ELSE
CALL HCHAR(14,1,32,288):: C

ALL LINE(13,130,134,131):: R

ETURN !029

1030 cALL ERR(K,S,P,L):: PRI

NT "Error®;K;"in line";L ::

GOSUB 980 :: BREAK !222

1040 CD$(1),CD$(2)="" :: INP
UT #2,REC(0) :DELS :: RETURN
1024

1060 !@P+ ==== user-def subs

===== {187
1070 SUB LINE(R,A,B,C):: CAL
L HCHAR(R,2,A):: CALL HCHAR (
R,3,B,28):: CALL HCHAR (R, 31,
C):: SUBEND !148 @
1080 SUB D(R,A$) :: DISPLAY A
T(R,1):A$:: SUBEND !073
1100 sSUB ERCARD(B) : : CALL D(
2,""):: FOR R=4 TO 9*B+12 ::
CALL D(R,""):: NEXT R :: CA
LL D(24,""):: SUBEND 1218
1110 SUB S(N):: CALL SOUND(1
00,N*100,0):: SUBEND !172
1120 SUB AKEY (AS,P) 1108
1130 CALL KEY(0,K,S):: IF &=
0 THEN 1130 ELSE BS=CHRS (K) :
: IF ASC(BS)>96 THEN B$=CHRS
(ASC(B$)~32)!1074
1140 P=POS(AS$,BS$,1):: IF P=0
THEN CALL S(2):: GOTO 1130
1156
1150 SUBEND !168
1160 SUB ASKF(R,A$,D$):: DIS
PLAY AT(R,2) :A$&" FILE: "&SE
G$(D$,1,5)&" /D" :: C
ALL KEY(3,K,S)!062
1170 ACCEPT AT(R,16)SIZE(-1)
BEEP:D$:: ACCEPT AT(R,18)s81
ZE(-8):F$:: D$S="DSK"&DS&" . "
&FS :: CALL KEY(5,K,8):: SUB"‘
END 1251
1180 SUB OPIF(D,DS$):: OPEN #
D:D$&" /1", DISPLAY ,FIXED 27,
(See Page 23)

MICROpendium/September 1994 Page 23

CARDFILE—

(Continued from Page 22) ,RELATIVE :: SUBEND !0121200 :: IF B THEN PRINT #D2,REC(R
RELATIVE :: SUBEND !229 SUB DPRINT(D1,D2,C,TS$,RC,CD C+1):CD$(2) 1122
1190 SUB OPDF(D,D$) :: OPEN # $(),B):: PRINT #D1,REC(C) : TS 1210 SUBEND !168
D:D$&"/D",DISPLAY ,FIXED 252 :: PRINT #D2,REC(RC) :CD$(1)

MICROpendium

DISK SALE

If you've been waiting for a sale on MICROpendi- monthly starting with the October 1994 edition,
um program disks, this is it! For a limited time programs from April 1994 through October 1994
(through Nov.1, 1994) Series 1-7 disks are avail- will be mailed as soon as the order is placed.)

able for a special price. (Series 7 disks are mailed

SERIES # REGULARPRICE SALE PRICE YOU SAVE DISCOUNT
Series 1 (Apr.'88-Mar. '89) $25.00 $15.00 $10.00 40%
Series 2 (Apr.'89-Mar. '90) $25.00 $15.00 310.00 40%

Y Series 3 (Apr. 90-Mar. 91) $25.00 $15.00 $10.00 40%
Series 4 (Apr.'91-Mar.'92) $25.00 $15.00 $10.00 40%
Series 5 (Apr. 92-Mar. 93) $25.00 $15.00 $10.00 40%
Series 6 (Apr. 93-Mar. 94) $25.00 $15.00 $10.00 40%
Series 7 (Apr. 94-Mar. 95) $40.00 $25.00 $15.00 38%

(Circle the items you want to order)

Disk shipping information
Postage is included for any disk sales to U.S. addresses.

Customer information

Name Canadian delivery: add $2.00 for each series of disks for
airmail delivery, $1.50 for surface. Overseas delivery: add
Address $3.50 for each series of disks for airmail delivery; add
$2.00 for each series for surface
City
FOR CREDIT CARD ORDERS
ST 1P
Please circle the items above and return this entire Credit Card No.
page (or a copy of it) with a check or money order in
‘o payment. Credit Card: MC Visa Exp. Date
(’ (Circle One)
: TOTAL REMITTED .
(U.S. Funds only; Texas residents add 7.75% sales tax) Signature -
(credit card orders only)

—t
———

Page 24 MICROpendium/September 1994

MICRO-REVIEWS

XB Compiler, Drawing Program, Video ¢
Titler, Font Converter, Turnfont, CALL
LINKable XB Enhancements

By CHARLES GOOD

The TI community continues to be en-
hanced by the efforts of Bruce Harrison.
Everything of his I am describing this
month has been released by Bruce into the
public domain. You can get these software
" -packages from me for $1 per disk, which
pays for the disk postage and mailer.

XB COMPILER
by Bruce Harrison

Most previous attempts at BASIC lan-
guage compilers for the 99/4A have re-
quired extensive rewrites of existing soft-
ware. Some were limited to only certain
subsets of TIBASIC or Extended BASIC,
and all were difficult to use. Not so with
the Harrison compiler. It is not necessary
to rewrite your favorite XB software be-
fore compiling, and the actual process of
producing the compiled code is not diffi-
cult. ,

Bruce has taken certain XB operations
and written assembly code that does the
operation faster than XB’s general pro-
gramming language interpreter. Whenev-
er a compiled XB program gets to one of
these operations it uses Harrison’s code
for extra speed. If the particular XB opera-
tion is not one of those that have been
speeded up by assembly code, the com-
piled XB program branches to GPL and
the XB operation occurs at normal speed.
This means that everything in a normal
XB program works when the program is
compiled. Some parts of the compiled pro-
gram work at normal speed and some
work at greatly accelerated speed. File
handling (OPEN #, PRINT #, etc.) works
at normal speed. XB programs that al-
ready have imbedded assembly routines
can’t be compiled, but you can sometimes
CALL LOAD assembly object code to
low memory and then CALL LINK to this
code from a compiled XB program.

The following are speeded up by the
Harrison compiler: CALL CHAR, CALL

COLOR, PRINT (to the screen), ON ER-
ROR, FOR/NEXT (including nested
loops), CALL GCHAR, CALL HCHAR,
CALL VCHAR, CALLKEY, ON GOTO,
and ON GOSUB. If Bruce continues to
work on his compiler this list may in-
crease.

The process of compiling is multistep
but not difficult. Bruce is well-known for
writing user-friendly instructions and pro-
vides many on-disk examples of each step
in the compiling process. First you get
your XB program working just the way
you want it. This XB program is saved in
merge format. The merge format program
is then run through the multistep compil-
ing process. Once compiled, the XB pro-
gram will OLD and RUN normally. If you
BREAK the program (with FCTN/4) you
will get the correct BREAKPOINT AT
LINE XXX message. You can then type
CON to continue the compiled program
Just like regular BASIC. You cannot, how-
ever, list or edit a compiled program. You
have to go back to the uncompiled XB
original code to do any editing and then
run the edited code through the Harrison
compiler again.

The main limitation to the compiler is
program size inflation. The compiled pro-
gram occupies much more memory and
disk space than the uncompiled original.
For each of the speeded-up operations list-
ed above the compilation process adds
some hidden assembly code to the pro-
gram which increases memory require-
ments. If a speeded-up operation is not
found in the original XB code, then the as-
sembly code for that operation is not
added. All of the speeded-up operations
listed above add 21 sectors to program
disk size compared to the original uncom-
piled XB code. Large XB programs may
not be compilable because they run out of
memory. This is one reason why Bruce
hesitates to add more speeded-up opera-
tions.

The Harrison compiler is the best gener-
al use XB compiler available to the TI
community. The compiler with on-disk
documentation and sample files comes on
a DSSD disk. Its source code is on a sec-
ond DSSD disk.

DRAWING PROGRAM
by Bruce Harrison

As the name suggests, this lets you
make multicolor drawings on screen and
save them to disk. You can use the key-
board or joysticks to move the cursor
around. You can either start from a blank
screen or load in a previously created
drawing. You can also load in TI-Artist
“_P” and “_C” picture files. For text you
can load in a TIA font or you can load anw
CHARALI type of file (something TIA™
can’t do). You can also load in TIA in-
stances and place them where you want on
the drawing screen. Pictures created with
Drawing Program can be printed on al-
most any printer, including Star SG10 and
10X models. They can also be saved to
disk, but graphics are nor saved in TI-
Artist compatible format.

Harrison’s Drawing Program isn’t near-
ly as fancy as TI-Artist. However, in most
cases, if you need to create screen art work
or manipulate graphics that already exist
in TIA format, the Drawing Program will
do nicely. Unlike TIA, which is commer-
cial, Drawing Program is free. With
source code it comes on one DSSD disk.
One word of caution. Drawing Program
doesn’t work on my AVPC system. I don’t
know if it works with other types of 80-
column systems.

VIDEO TITLER
by Bruce Harrison

Bruce was unimpressed with the text
only title screens I create for the Lima™’
Multi User Group Conference videotapes,
so he decided to help me make some really

(See Page 25)

MICROpendium/September 1994 Page 25

J\/I ICRO-REVIEWS—

(Continued from Page 24)

fancy videotape title screens. Video Titler
is the result. You are supposed to take the
computer screen graphics manipulated
with this software and record them onto a
videotape. The results are impressive. As
many of you know, the video output of a
99/4A can, using a monitor cable, be fed
directly into the *“video in” jack of a VCR,
where it can be recorded onto videotape
and displayed on the screen of a TV
hooked up to the VCR.

Video Titler lets you store two full
screens of graphics in memory and then
rapidly switch back and forth between
these pictures, displaying them one at a
time on screen and on the videotape you
are recording. First you load the pictures
into memory. They can be either Drawing
Program or TI-Artist pictures. Then you
press “record” on the VCR and start
switching between pictures. If the pictures
in memory are only slightly different,
rapid switching produces an animation ef-

{/yct. In addition to instantly switching be-
‘wween the two screen pictures, you can
wipe the current image in various ways to
display the second picture. Wipes can be
left to right, right to left, top to bottom,
bottom to top, or center to left/right. If you
want to display more than two pictures,
press “pause” on the VCR. Then load
more pictures, replacing those already in
memory. Then release the “pause.”

I can send you Video Titler, some neat
video pictures made by Bruce, and the
Drawing Program (without source code,
no room for it) all on one DSSD disk.

FONT CONVERTER
by Bruce Harrison

A few years ago Jim Peterson created
dmost 200 screen fonts for use in Extend-
td BASIC software. Bruce Harrison has
made an assembly program to convert all
of these Peterson screen fonts into
CHARALI program files. The conversion
pocess is somewhat lengthy, since each
Yeterson screen font has to be individually
‘!nverted. The result is a whole bunch of
nostly five-sector CHARA1 fonts that can
% used with Drawing Program. A unique
kature of Drawing Program is its ability
b import CHARAL1 fonts. You can also

use these converted CHARA1 screen
fonts with word processing software, al-
though many of them don’t look very
good used this way.

Font Converter comes on one SSSD
flippy disk. The flip side of the disk con-
tains some of Jim Peterson’s original
screen fonts for you to convert. The entire
collection of Peterson’s screen fonts for
you to convert is available from me on
three additional SSSD flippy disks.

TURNFONT
by Bruce Harrison

Here is something to do with all the
strange CHARA1 fonts you make with
Font Converter. Turn them on their sides,
90 degrees, or turn them again to make the
characters upside down. Turnfont will in-
putany CHARAL1 font and output to a disk
file the same CHARALI font rotated 90 de-
grees either right or left. You can take a
previously rotated font file, run it through
Turnfont again, and get an upside-down
CHARAL font. The resulting rotated fonts
can be used with Drawing Program, Fun-
nelweb’s central menus, or with word pro-
cessing software. The results are really
strange and humorous! The software and
some sample turned fonts comes on one
SSSD disk.

CALL LINKable XB
ENHANCEMENTS
by Bruce Harrison

Each of the following Harrison public
domain assembly utilities comes on a
SSSD disk and can be merged into and
CALL LINKed from your favorite XB
programs. These can be added to your XB
programs in any of three ways.: 1- Just
CALL LOAD Bruce’s utilities into mem-
ory and them CALL LINK to them. You
do this while you are experimenting with
the utilities 2- Use ALSAVE to imbed a
utility into your program. 3- Imbed the
utility in your program with “Hi Mem
Loader” which, unlike ALSAVE, leaves
all of low memory available.

Once these utilities are imbedded into
your XB program (you can imbed several
utilities into the same XB program) they
are transparent. You OLD or RUN the
program as you normally would from XB

and the assembly code is automatically
loaded ready for your program’s CALL
LINK. Each utility comes with source
code, demo XB programs, the necessary
software to imbed the utility into your XB
program, and Bruce Harrison’s user-
friendly step-by-step documentation.
CALL FILES XB

This allows you to do CALL FILES
from within a running XB program. Previ-
ously, CALL FILES could be executed
only from command mode. Our computers
normally defauit to CALL FILES(3)
which lets us have three files open simul-
taneously. With this utility imbedded in
your XB program you no longer have to
do a CALL FILES(x) from command
mode before running a program that needs
more than three simultaneously open files
or a program that needs the extra stack
memory opened up by CALL FILES(1).
Just OLD and RUN your XB program and
the needed CALL FILES(x) is done auto-
matically by the program,

TIME OUT

This puts a time limit for INPUT, AC-
CEPT AT, and CALL KEY. If data is not
entered within the time allowed, the com-
puter assumes just <enter> has been
pressed and XB program execution con-
tinues on the basis of this null string input.
The time limit is easily modified by
changing a parameter of the CALL LINK
statement in the XB program. An obvious
use for this sort of time limit is in memory
games where a player has only so much
time to input an answer.

BACKGROUND MUSIC

This plays background music while
waiting for user input at INPUT, ACCEPT
AT, and CALL KEY. You can even have
the music play while editing the program
from command mode. Actually you can
start and stop the music anytime you want.
CALL LINK(“CHIME") turns it on and
CALL LINK(“ENDSND™) turns it off.
Music is provided by a “sound list” as de-
scribed in the Editor/Assembler manual.
Such lists resemble, but aren’t quite the
same as, a series of CALL. SOUND state-
ments. Bruce provides three sound files in
both source and object code for those like
me who have no talent creating music and
don’t understand sound lists. Sounds in-

(See Page 26)

Page 26 MICROpendium/September 1994

MICRO-REVIEWS—

(Continued from Page 25)
clude a nice three-part chime and 16 bars
of a Vivaldi sonata.

An additional utility in the Background
Music software package allows you to use
music to time out at ACCEPT AT. The
music plays for a defined length of time. If
there is no user input during this time, the
computer simulates pressing <enter> to
yield a null string and the XB program
continues from that point. Bruce includes

a really cute demo of this feature in the
form of a small Jeopardy television game
simulation. The Jeopardy theme (the third
sound file provided by Bruce) plays while
the program displays an answer and waits
for the user to input the proper guestion.
When the music is finished, time is up, the
opportunity for user input ends, and the
user loses.

Bruce really appreciates your com-
ments and suggestions. Feedback from TI

users is why he enjoys providing us with
all this great public domain software.
Write him at 5705 40th Place, Hyattsville
MD 20781. His phone number is (301)
277-3467. I can be reached at P.O. Box
647, Venedocia OH 45894. My phone is
(419) 667-3131 and you can use
cgood@lima.ohio-state.edu to send me
internet email.

USER NOTES

NEW without
CLEARIng
the screen

This comes from Oliver D. Hebert, of
Brewton, Alabama. He writes:

Jerry Keisler’s LOADER100 program
(June 1994 MICROpendium) is an excel-
lent example of an Extended BASIC pro-
gram that writes and Extended BASIC

program. Unfortunately, the final screen
message (statement 970) is erased as soon
as NEW is entered. Did you foresee this
and make a note of the remaining two in-
structions?

CALL LOAD(-31952,255,231,255,23
1) tells the TI that no program is present,
but it doesn’t disturb the screen. This
should be followed with :: END. The en-
tire program is still in memory, but the TI
has been tricked into thinking that no pro-
gram is present.

Coffey new manager of TI-NET

Jerry Coffey has become the new man-
ager of the TI-NET, special interest group
for TI Geneve users on Delphi, as of Sept.
1.

Coffey has been assistant manager for
TI-NET for a number of years.

He replaces Jeff Guide, who has man-
aged the SIG for the past seven years.
Guide is moving on to an expanded role

as Internet resource developer for Delphi,
a position he has held since May.

Guide’s new responsibilities include
assisting other sysops in setting up Inter-
net services and setting up special Internet
features.

Guide notes that TI-NET recently
ranked 101 out of 500 SIGs on Delphi.

Before using CALL LOAD, CALL
INIT must be in effect. It should either be
done or have already been done, but it
should never be re-done, so it must be
checked with a CALL PEEK.

These four statements can be added to
LOADERI100 as an enhancement. State-
ments 969 and 971 replace and bypass the
original 970. Line 972 does a CALL INIT
only if it hasn’t been done, and 973 fakesT ¥
NEW without clearing the screen.

969 DISPLAY AT(15,1)ERASE AL

L:"An equivalent to NEW has

been done.": :"Now, do t

he following:" :: GOTO 971 !
Modified Program !127

971 DISPLAY AT(19,2) : "MERGE

DSK";DISK$; " .CAT": " SAVE DSK
";DISKS; " .LOAD": :"*“"RUN DSK
“;DISKS;".LOAD"" to test." !

103

972 CALL PEEK(8198,K,S):: IF
K<>170 OR S<>85 THEN CALL I

(See Page 27)

BUGS & BYTES

Making exchanges

Persons wanting to avoid shipping charges for TI repairs can
bring their defective items to Cecure Electronics in Muskego,
Wisconsin, when they are in the neighborhood, according to
Don Walden of the company, the official TI99/4A service cen-
ter.

Also, anyone who is going to the Chicago-Milwaukee fair
Nov. 12 in Gurney, Illinois, can do the same thing, but needs to
let Walden know in advance what the item is that needs replace-
ment. Walden says he can’t bring everything with him, but will

be happy to bring anything that he knows about. The customer
also needs to bring the defective item to the fair.

Coming from all over

Speaking of fairs, Berry Harmsen of the TI Gebruikersgroep
in the Netherlands says his group will be represented at the In-
termational TI-Meeting in Gottingen, Germany, Oct. 14, along
with eight German clubs and groups from Belgium, France,
Austria, Switzerland and Great Britain, plus the one remaining
TI vendor in Europe.

]

4

I

r‘)mmand file to use.

MICROpendium/September 1994 Page 27

USER NOTES

(Continued from Page 26)

NIT 1232
973 CALL LOAD(-31952,255,231
,255,231):: END !242

Statements 38-40 of LOADER100
mention a possible problem with state-
ment 580. You might try this addendum to
statement 580 as a fix:

,OUTPUT ! Modified Program:
", OUTPUT" added to fix the
note in 38-40

TI-BASE date
handling

This comes from Allen J. Rogers, of
Springfield, Ohio. He writes:

In TI-BASE, it is sometimes convenient
to handle the date that you put in on start-
up (e.g. 12/25/94) so that it comes out as
25 December 1994. If you are using the
latest version of TI-BASE (V 3.02, dated
Aug. 28, 1990), you can place a file in the
INSTALL area which will do this for you
with a simple command. See Fig. 1 for the

Install this command file under the
name LDT in your INSTALL area.

Change the disk number shown to the pro-
gram disk number.

CREATE the following small database
named MNTH and save it to the program
disk:

Field Descriptor Type Width Decimal

MONTH c 10
NUM N 3 0
Load this database with:
MONTH NUM
January 1
February 2
March 3
April 4
May 5
June 6
July 7
August 8
September 9
October 10
November 11
December 12

After you load the database, sort it on
NUM. Keep it on the program disk under
the name MNTH.

When you write a command file in
which you want the date to appear as 25
December 1994, type the following com-
mands in the command file:

PRINT (LPT)

Fig. 1

LOCAL XDATE D 8

LOCAL LDT C 17

LOCAL MM N 2 0

LOCAL DD N 2 0

LOCAL YY N 2 0

LOCAL MTH C 10

REPLACE XDATE WITH .DATE

SELECT 5

USE DSK5 .MNTH
TOP

FIND MM
REPLACE MTH WITH MONTH
REPLACE LDT WITH DD |

fo* " | 19 | YY
PRINT (EMP) (25),*Date: *,LDT
CLOSE
¢ SELECT 1
¥ RETURN

REPLACE YY WITH SUBSTR(XDATE, 1, 2)
REPLACE MM WITH SUBSTR(XDATE, 3, 2)
REPLACE DD WITH SUBSTR(XDATE, 5, 2)

| TRIM(MTH) ;

DO LDT
PRINT (LPT)

Where LPT is the print-
er command which resets
the printer to standard
mode. The date will be set
25 spaces from the left
margin.

Soundmaker
ideal for
experimenting
The following pro-
gram, called Soundmaker,
was written by the late
Jim Peterson of Tigercub
fame. The program runs
in Extended BASIC. It re-
quires a memory expan-

sion. It is designed to cre-
ate sound effects based on

Atfend

a TLI fair

this

user input. Variables include tone, delay
and frequency. Sound effects can be saved
to disk.

SOUNDMAKER

100 CALL CLEAR ::
046

110 A;B;C;CAS;D;DEL(1) ;DL;DL
M;DLMA;DM; DMA;DR(1) ;DX;F;FL;
FLAG;FM;FMA;FR(1,1);G(1);J:K
;K$;L;LN;M$;N$;0P$;0P2%;P; P$
iPR;QS$;R;R$;S;T;V;VL(1,1);VM

1018
120 @;@@;VMA;X;YS$;C$;DS;LS;L

GOTO 140 !

1;L2;MS$;FS$;RF :: CALL COLOR
:: CALL SOUND :: CALL SCREEN
:: CALL KEY :: CALL HCHAR :
: CALL CHAR :: CALL GCHAR !1

62

130 !@p- 1064

140 CALL SCREEN(16):: FOR S=

2 TO 14 :: CALL COLOR(S,5,1)
: NEXT S :: K$=","% :: CAS="

CALL SOUND(" !001
150 CALL CHAR(94, "3C4299A1A1
99423C") !programmed by Jim P
eterson Dec. 1984 - copyrigh
t 1984 Tigercub Software, 15
6 Collingwood Ave., Columbus
OH 43213 1058
160 DISPLAY AT(2,9) :"SOUNDMA
KER": :"TCX-1137 » Tigercub
Software" :: DISPLAY AT(6,1)
:* This program will help yo
u':"to develoszound effects
." 1081
170 DISPLAY AT(&,1):" The de
fault values for each":"opti
on will be those chosen":"th
e previous time, so that":"y
ou can easily experiment" !1
79
180 DISPLAY AT(12,1):"with m
odifying a sound.":" For ins
tance, you can use":"the ran
dom option until you':"hear
an interesting effect," 1102
190 DISPLAY AT(16,1l):"then s
witch to selective to*:"refi
ne it.":" When you have perf
ected the":"effect, use the
(See Page 28)

rear!

Page 28 MICROpendium/September 1994

USER NODTES

(Continued from Page 27)
selective" 1135
200 DISPLAY AT(20,1):"and sa
ve options to save it":"to 4
isk as a MERGE format":"file
LY 1172
210 DISPLAY AT(24,10) :"Press
any key" :: CALL KEY(0,K,S)
:: IF S=0 THEN 210 !012
220 CALL CLEAR :: DISPLAY AT
(3,1):" The MERGE file can t
hen be*:"converted to a RUNa
ble pro-":"gram, or MERGEd i
nto another" 1162
230 DISPLAY AT(6,1):"program
, by MERGE DSK1. (filename) *
1234
240 DISPLAY AT(9,1):" If you
select 4 tones, re-":"membe
r that one of them must":"be
a noise tone between -1":"a
nd -8." 1240
250 DISPLAY AT(14,1):" For b
ass tones, select the":"4-no
te option. Give the l1lst":"an
d 2nd notes a positive":"val
ue; the frequency and" 1171
260 DISPLAY AT(18,1) :"volume
may be either audible":'"or
inaudible. Give the 3rd":"no
te a positive value below":"
1000 and a volume of 30, and
v 1078
270 DISPLAY AT(22,1):"the 4t
h note a -4 noise with":"an
audible volume.":"
Press any key" 1191
280 CALL KEY(0,K,S)::
THEN 280 1093
290 DISPLAY AT(12,1)ERASE AL
L:"This program is sold by":
*TigercubASoftware for only"
:"$3.00 - if you've got $§2.
98*:"morals and a $2.98" !1
57
300 DISPLAY AT(16,1):"consci
ence, 6go ahead and":"steal i
t!" :: DISPLAY AT(23,1):"Pre
ss any key" 1013
310 GOSUB 1280 ::
K,S8):: IF S=0 THEN 310 !082
320 CALL CLEAR :: D=500
: A,B,C,R,T=1 :: OP$="8"
Q$="C* :: P$,R$,Y$="Y" Ipred
efine initial default values

IF S=0

CALL KEY (0

1169
330 DISPLAY AT(1,1) : "CHOOSE
- """ % :: DISPLAY AT(2,1):"
(S)elective®:" (R)andom*:
" (D)isable this option":"
gt W wgm Mow oW .. DISPLAY
AT(1,11):0P$:: OP2$8=0P$!1
53
340 ACCEPT AT(1,11)VALIDATE(
"RSD")SIZE(-1) :0OP$:: IF OPS
="R" THEN 820 :: IF OP$="D"
THEN FLAG=1 :: OP$=0P2$:: G
OTO 330 !flag delete option
1103
350 CALL HCHAR(1,1,32,320)::
DISPLAY AT(1,1):"CHOOSE - "

:: DISPLAY AT(2,1):" (R) R
epeat":" (C) Change":" (S)
Save" 1164

360 DISPLAY AT(1,10):08 :: A

CCEPT AT(1,10)VALIDATE("RCS"
JSIZE(-1):Q% 1183

370 IF Q$="S" THEN GOTO 1090
! to save as MERGE file !17

6

380 IF Q$="R" THEN 560 ! to

repeat last routine 1157

390 GOSUB 670 !get input for
change - how many repeats?
1211

400 GOSUB 800 ! how many sou

nds? 1052

410 FOR J=@ TO A :: IF A<@@
THEN 430 !116

420 X=J :: GOSUB 690 :: DISP
LAY AT(1,1):N$;" sound -* !0
78

430 D=DR(J):: IF D=0 THEN D=
1 1252

431 GOSUB 610 :: DR(J)=D ! g
et duration of each sound 2
21

440 GOSUB 810 !how many tone
s? 1171

450 FL=0 :: FOR L=@ TO B ::
IF B<@@ THEN 470 1107

460 X=L :: GOSUB 690 :: DISP
LAY AT(4,1):N§;" tone -" 122
3

470 F=FR(J,L):: GOSUB 620
FR(J,L)=F :: V=VL(J,L):: GO
SUB 660 :: VL(J,L)=V :: IF B

=1 THEN 490 ! get tones !058
480 NEXT L !226
490 IF R<@@ THEN 510 !141

X |
500 DL=DEL(J) :: GOSUB 680 1 ;
DEL(J)=DL ! how long delay
between sounds? 1167
510 IF A=1 THEN 530 1010
520 NEXT J !224
530 CALL HCHAR(1,1,32,768)::
PR=11 : FOR P=1 TO A :: ON
G(P)GOSUB 710,720,730,740 :
: PR=PR-(LEN(M$)>28):: IF DE
L(P)=0 THEN 550 !print CALL
SOUNDS on screen (015
540 PR=PR+1 :: DISPLAY AT (PR
,1) :"FOR DELAY=1 TO";DEL(P) ;
":: NEXT D" !print delays on
screen !174
550 PR=PR+1 :: NEXT P !037
560 IF RF=0 THEN 350 !if fre
quencies undefined 1137
570 ON ERROR 1270 :: FOR T=1
TOR :: FOR S=1 TO A :: ON
G(S)GOSUB 760,770,780,790
IF DEL(S)=0 THEN 590 !play
the sounds 1171
580 FOR DX=1 TO DEL(S):: NEX
T DX !for the delays !167
590 NEXT S :: NEXT T :: IF F!
LAG=0 THEN 330 !go to 1lst op™
tion if not deleted 1148600
IF OP2$="S" THEN 350 ELSE 82
0 !if 1st option deleted, go
to previous 2nd option !132
610 DISPLAY AT(2,1):"Duratio
n? ";D:" (-4250 to 4250)"
: ACCEPT AT (2, L2)VALIDATE("0
123456789~ ")SIZE(-5):D :: I
F D<-4250 OR D>4250 OR D=0 T
HEN 610 ELSE RETURN {039
620 DISPLAY AT(5,1) :"Frequen
cy? ";F-(F=0)*110:" (110 to
44733 or -1 to -8)" :: ACCE
PT AT(5,12-(F>0))VALIDATE("0
123456789~ ")SIZE(-5):F 1172
630 IF F>-9 AND F<0 OR F>109
AND F<44734 THEN 640 ELSE 6
20 tcheck valid noise or fre
quency parameters !168
640 FL=FL+ABS(F<0)*2 !flag s
election of noise 1205
650 IF L=4 AND FL=0 THEN 620
ELSE RETURN !4-tone sound m
ust contain noise 1149 1 ‘
660 DISPLAY AT(6,1):"Volume:?”
“;V;"(0 to 30)" :: ACCEPT
AT(6,12)VALIDATE("012345678
" (See Page 29)

Q?

-

~N
r———’—--———-————-————————————

MICROpendium/September 1994 Page 29

USER NOTES

(Continued from Page 28)

9 ")SIZE(-2):V :: IF V<0 OR
V>30 OR V<>INT(V)THEN 660 EL
SE RETURN !019

670 RF=1 :: DISPLAY AT(1,1):
"Repeat how many times? ";R:
:: ACCEPT AT(1,2
5)VALIDATE("0123456789 ")SIZ
E(-3):R :: RETURN !031

680 DISPLAY AT(8,1):"Delay b
etween? “.DL;"* (0 -1000
)" :: ACCEPT AT(8,21)VALIDAT
E("0123456789 ")SIZE(-4) :DL
:: RETURN !225

690 IF X<4 THEN N$=SEGS$("1lst
2nd3rd",X*3-2,3)ELSE N$=STRS$
(X)&"th" 1150

700 RETURN !136

710 MS=CAS&STRS (DR(P)) &KS&ST
RS (FR(P, 1))&K$&STRS (VL (P, 1))
&")" :: DISPLAY AT(PR,1):M$
:: RETURN !print l-tone soun
d 1092

720 MS=CAS&STRS (DR(P)) &KS&ST

L R TR TR TR}

RS(FR(P,1))&KS$S&STRS (VL(P, 1))
&KS&STRS (FR (P, 2)) &KS&STRS (VL
(P,2))&")" :: DISPLAY AT(PR,
1):M$:: RETURN (2-tone !037
730 MS=CAS&STRS (DR(P)) &KS&ST
RS(FR(P, 1)) &KS&STRS (VL(P,1))
&KS&STRS (FR(P, 2)) &K$S&STRS (VL
(P,2))&KS&STRS (FR(P, 3)) &K$&S
TRS(VL(P,3))&")" :: DISPLAY

AT(PR,1):M$:: RETURN !3 116
3

740 M$=CAS&STRS (DR(P)) &KS&ST
R$(FR(P,1))&KS&STRS (VL (P, 1))
&KS&STRS (FR(P, 2)) &KS&STRS (VL
(P,2)) 1228

750 MS=MS$S&KS&STRS (FR(P, 3)) &K
$&STRS (VL (P, 3)) &KS&STRS (FR(P
,4))&KS&STRS (VL (P, 4))&") " ::
DISPLAY AT(PR,1):MS$:: RETU
RN !4-tone sound !238

760 CALL SOUND(DR(S),FR(S,1)
,VL(S,1)):: RETURN !play 1-t
one sound {240

770 CALL SOUND(DR(S),FR(S,1)

LI Series 1994-1995 mailed monthly (April 1994-March subprograms, 1 disk)cccooevveriniiiiniiniveninennenens $6.00
1995).cveieirinirinnineeisensnssneassncnsensnsnssssessessasensassaenes $40.00
TI-Forth (2 disks, req. 32K, E/A, no docs).............. $6.00
3 Series 1993-1994 mailed monthly (April 1993-March
TOOH)vicrrirrinricresrenreesnesressassessessssnsessorssssossosesresres $25.00 TI-Forth Docs (2 disks, D/V80 files)cccvveenvennn $6.00

,VL(S,1),FR(S,2),VL(S,2))::
RETURN !2-tone 1078
780 CALL SOUND(DR(S),FR(S,1)
,VL(S,1),FR(S,2),VL(S,2),FR(
S,3),VL(S,3)):: RETURN I3 !2
34
790 CALL SOUND(DR(S),FR(S,1)
,VL(S,1),FR(S,2),VL(S,2),FR(
S,3),VL(S,3),FR(S,4),VL(S,4)
) :: RETURN !4-tone sound !15
1
800 DISPLAY AT(1,1):"How man
y sounds? “;A:" *: 1 ACC
EPT AT(1,19)VALIDATE(*012345
6789 ")SIZE(-3):A :: IF A>10
THEN 800 ELSE RETURN !049
810 DISPLAY AT(3,1) :"How man
y tones? ";G(J)-(G(J)=0):: A
CCEPT AT(3,18)VALIDATE("1234

")SIZE(-1):B :: G(J)=B :: RE

TURN {111

820 RF=1 :: RANDOMIZE :: CAL

L HCHAR(2,1,32,224):: DISPLA
(See Page 30)

-———-———1

| MICROpendium disks, etc.

Series 1992-1993 (Apr 1992-Mar 1993, 6 disks) .. $25.00
Series 1991-1992 (Apr 1991-Mar 1992, 6 disks) .. $25.00
Series 1990-1991 (Apr 1990-Mar 1991, 6 disks) ..$25.00
Series 1989-1990 (Apr 1989-Mar 1991, 6 disks) ..$25.00
Series 1988-1989 (Apr 1988-Mar 1989, 6 disks)...$25.00

1988 updates of TI-Writer, Multiplan & SBUG
(2 diSKS) eerrrrerereeeereee e s et e $6.00

Disk of programs from any one issue of MICROpen-
dium between April 1988 and present $4.00

CHECKSUM and CHECK programs from October

110 Subprograms (Jerry Stern's collection of 110 XB

1987 issue (includes docs as D/V 80 file) $4.00

Name

Address

Check/MO

City

Credit Card #

Texas residents add 7.75% sales tax.
Check box for each item ordered and enter total amount here:

(Circle method of payment)

Visa

M/C

State ZIP

Exp. Date

Signature

————-———-—---————-——--—————————————————————————J

Page 30 MICROpendium/September 1994

USER NOTES

(Continued from Page 29)
Y AT(1,1) :"Entirely random?
(Y/N) ";R$:: ACCEPT AT(1,24
)VALIDATE ("YN")SIZE(-1) :RS$:

: IF R$<>"Y" THEN 920 :: Y$=
"y" 1198
830 R=INT(5*RND+5) :: A=INT(5

*RND+1) !random 5-9 repeats,
1-5 sounds !033
840 FOR J=1 TO A
T(2C0*RND+10) :: IF R$="N" TH
EN 850 :: B=INT(4*RND+1):: G
(J)=B 1218
850 FOR L=1 TO B !131
860 IF L=4 AND FL=0 THEN 880
!4-tone sounds must have a
noise 1061
870 IF FL=2 THEN 890 :: ON I
NT (2*RND+1)GOTO 880,890 !ran
domly frequency or noise 106
7
880 FL=2 :: FR(J,L)=-(INT(5*
RND+4)):: GOTO 900 !random n
oise - turn on flag !033
890 FR(J,L)=INT(1500*RND+110
) frandom frequency 110-1609
1055
900 VL(J,L)=INT(5*RND) *2 ::
NEXT L :: DEL(J)=INT(20*RND)
: IF Y$="N" THEN 910 :: FL=
0 !random volume 0-8, delay
0-19, turn off flag 1227
910 NEXT J :: CALL HCHAR(11,
1,32,448):: GOTO 530 !erase
previous print - to print an
d play !160
920 GOSUB 670 :: GOSUB 800 :
: J=0 :: GOSUB 810 :: FOR J=
1 TOA :: G(J)=B :: NEXT J :
: DISPLAY AT(3,1):"With nois
e? (Y/N) *";Y$!restricted ra
ndom !017
930 ACCEPT AT(3,19)VALIDATE(
"YN")SIZE(-1):Y$:: IF (Y$="
N"*)*(B=4)THEN 930 1020
940 IF Y$="N" THEN FL=2 !208
950 DISPLAY AT(1,1) :"Restric
t parameters? (Y/N)";P$:: A
CCEPT AT(1,27)VALIDATE("YN")
SIZE(-1):P$:: IF P$="N" THE
N 840 1027
960 DISPLAY AT(2,1) :"Duratio
n - minimum? ";DM :: ACCEPT
AT(2,22)VALIDATE("0123456789
")SIZE(-4):DM :: IF DM<-425

:: DR(J)=IN

0 OR DM>4250 OR DM=0 THEN 96
0 1063
970 DISPLAY AT(3,1):"
maximum? *;DMA :: ACCEPT
AT(3,22)VALIDATE(*012345678
9 ")SIZE(-4):DMA :: IF DMA<-
4250 OR DMA>4250 OR DMA=0 OR
DMA<DM THEN 970 1027
980 DISPLAY AT(4,1):"Frequen
cy - minimum? *;FM :: ACCEPT
AT (4,23)VALIDATE(*012345678
9 ")SIZE(-5):FM 1039
990 IF FM>-9 AND FM<0 OR FM>
109 AND FM<44733 THEN 1000 E
LSE 980 !119
1000 DISPLAY AT(5,13) :"maxim
um? ";FMA :: ACCEPT AT(5,23)
VALIDATE(%0123456789 ")SIZE(
-5):FMA !182
1010 IF FM<0 AND FMA>0 THEN
980 1103
1020 IF FMA>-9 AND FMA<0O OR
FMA>109 AND FMA<44733 AND FM
A>FM THEN 1030 ELSE 1000 !14
4
1030 DISPLAY AT(6,1) : "Volume
- minimum? ";VM :: ACCEPT A
T(6,19)VALIDATE("0123456789
")SIZE(-2):VM :: IF VM<0 OR
VM>30 THEN 1030 !062
1040 DISPLAY AT(7,10) :"maxim
um? ";VMA :: ACCEPT AT(7,19)
VALIDATE("0123456789 ")SIZE(
~-2):VMA :: IF VMA<0O OR VMA>3
0 OR VMA>VM THEN 1030 !138
1050 DISPLAY AT(8,1):"Delay
- minimum? *;DLM :: ACCEPT A
T(8,18)VALIDATE("0123456789
")SIZE(-3) :DLM 1254
1060 DISPLAY AT(9,9) : "maximu
m? “;DLMA :: ACCEPT AT(9,18)
VALIDATE("0123456789 ")SIZE(
-3):DLMA :: IF DLMA<DLM THEN
1060 1137
1070 FOR J=1 TO A :: DR(J)=1
NT ((DMA-DM+1) *RND+DM) : : FOR
L=1 TO B :: FR(J,L)=INT((FMA
-FM+1) *RND+FM) : : VL(J,L)=INT
((VMA-VM+1) *RND+VM): : NEXT L
1055
1075 IF B=4 THEN FR(J,4)=-(I
NT(8*RND+1)) 1175
1080 DEL(J)=INT((DLMA-DLM+1)
*RND+DLM) : : NEXT J :: CALL H
CHAR(11,1,32,448):: GOTO 530

1130 ‘l

1090 IF RF=0 THEN 350 :: DIS
PLAY AT(1,1)ERASE ALL:"Filen
ame? DSK" !to save CALL SOUN
DS in MERGE format !054
1100 ACCEPT AT(1,14):F$ 1252
1110 DISPLAY AT(2,1):"Starti
ng line number? " :: ACCEPT
AT(2,23)VALIDATE (DIGIT) :LN !
088
1120 OPEN #1:"DSK"&F$, OUTPUT
,DISPLAY ,VARIABLE 163 !035
1130 C$=CHRS$(179) 1212
1140 GOSUB 1260 1064
1150 FOR J=1 TO A :: M$=L3%&C
HR$ (157)&CHR$ (200) &CHRS (5) &
SOUND"&CHRS (183) 1196
1160 M$=MS$&CHRS (200) &CHRS (LE
N(STR$(DR(J))))&STRS (DR (J)) &
C$!CALL SOUND and duration
1087
1170 ON G(J)GOSUB 1220,1230,
1240,1250 1185
1180 M$=M$&CHR$(182)&CHR$(O)
:: PRINT #1:M$:: GOSUB 1260
!close parenth., close line*W
1245 s
1190 IF DEL(J)=0 THEN 1210 !
else save delay routine 1078
1200 PRINT #1:LS&CHRS(140)&"
D"&CHR$ (190) &CHRS (200) &CHRS (
1)&*1"&CHRS (177)&CHRS (200) &C
HR$(LEN(STR$(DEL(J))))&STR$(
DEL(J)) &CHRS (130:) &CHR$ (150) &
"D"&CHR$(0) : : GOSUB 1260 !19
1
1210 NEXT J :: PRINT #1:CHRS
(255)&CHRS (255) : : CLOSE #1 :
: END i{close MERGE, close fi
le 1039
1220 M$=M$&CHRS (200) &CHRS (LE
N(STRS (FR(J,1))))&STRS (FR(J,
1))&CS$&CHRS (200) &CHRS (LEN(ST
R$(VL(J,1))))&STRS (VL(J,1)) :
: RETURN ! 1st note 1024
1230 GOSUB 1220 :: M$=M$&CS&
CHR$(200)&CHR$(LEN(STR$(FR(J
,2))))&STRS (FR(J, 2)) &CS&CHRS
(200) &CHRS (LEN(STRS (VL (J, 2))
))&STRS (VL (J,2)) :: RETURN !0
68 ‘T
1240 GOSUB 1230 :: M$=M$&CS8&
CHRS$ (200) &CHRS (LEN (STRS (FR(J
+3))))&STRS (FR(J, 3)) &C$&CHRS
(See Page 31)

MICROpendium/September 1994 Page 31

USER NOTES

(Continued from Page 30)
(200) &CHRS (LEN (STRS (VL (J,3))

))&STRS(VL(J,3)) :: RETURN !0
82
1250 GOSUB 1240 :: M$=M$&CS$&

CHRS$ (200) &CHRS (LEN (STRS (FR(J
,4))))&STRS (FR(J, 4)) &C$&CHRS
(200) &CHRS (LEN(STRS (VL (J,4))
))&STRS(VL(J,4)):: RETURN !0
96

1260 L1=INT(LN/256):: L2=LN-
256*L1 :: L$=CHRS (L1)&CHRS (L
2):: LN=LN+10 :: RETURN l!alg
orithm to convert line numbe
r to MERGE format !109

1270 DISPLAY AT(21,1):"ERROR
{ - CALL SOUND CANNOT":"CONT
ATN TWO NEGATIVE VALUE":"NOI
SES!"* :: RETURN 350 !162
1280 CALL GCHAR(13,11,@):: @
=INT(SQR(@))-10 :: CALL GCHA
R(16,14,@Q):: @@=INT(SQR(@Q)
)-10 :: RETURN !028

“"-THEN in XBASIC

The following was written by Jim
Swedlow in the User Group of Orange
County (California) ROM newsletter.

A number of the Extended BASIC
columns discussed alternatives to IF-
THEN. Here is another.

Suppose that A$ depends on the value
of I. You might use this code:

IF I=1 THEN AS$="FRED" ELSE A
$="PAUL"

A simpler way is to use the SEG$ func-
tion:

A$=SEGS$ ("PAULFRED", 1-4* (I=1)
+4)

Will this work if the two variables have
different lengths? Yes! Remember that
SEG$ does not produce an error if the
length of the new string (the last number)
is longer than the source string. If our two
names are “PAUL” and “SAM,” this
works:

A$=SEGS ("PAULSAM",1-4*(I=1),
4)

- MICROpendium pays $10 for items
submitted by readers and used in this
column. Send them to MICROpendium
User Notes, P.O. Box 1343, Round
Rock, TX 78680.

LLASSIFIEDS

: FOR SALE

“THE WATCHAMACALIT”
From DBM TECHNOLOGIES
ATTENTION MYARC HFDC USERS!
LIMITED SUPPLY $29.95 Each. GET
YOUR HFDC UPGRADED NOW!
From DBM TECHNOLOGIES 17725
22nd Street Ogden, Utah 84401-2112
Phone: (801) 782-1004 or (801) 394-
6815. “THE WATCHAMACALIT™ is
designed to Back-Up the clock on the
Myarc HFDC. Reviewed in MI-
CROpendium in August 1993. Comes
complete with software. v11n10

FOR SALE
Geneve 9640 card and manual. Call
Jim (305) 294-7638

PROGRAM INNOVATORS
SOFTWARE SALE
TOUCHDOWN: NFL Football Predic-
tor $10.00 WALSTREET: Investment
Package $30.00 USVBA Power Vol-
leyball (ML-Game) $10.00 Klingon In-
vaders, Destroy Klaatu, Desert Rat
(Machine Language Games) $10.00
Cutthroat Cribbage, Tltris, Cockroach-
es, Snomobile, Martian Missiles,

$10.00 Multiple orders 10% discount
4122 Glenway, Wauwatosa WI| 53222-
1116

TI MONITOR
Original Tl monitor. Asking $50. Call
512-255-1512.

What a deal!

Prices slashed
on MICROpendium:

Classifieds!

Classified ads are now available for 10 cents per word,
a reduction of more than 50 percent.

If you've got something you want to sell or buy,
advertise it in MICROpendium Classifieds.

Simply write your ad on a separate sheet of paper,
count the words (a phone number counts as one word) and
send it, along with payment, to

MICROpendium Classifieds
P.O.Box 1343
Round Rock, TX 78680.

Page 32 MICROpendium/September 1994

The ONLY monthly devoted to the TI99/4A

Subscription Fees

O 12 issues, USA, $35 [12 issues, Mexico, $40.25

O 12 issues, Canada $42.50 O 12 issues, other countries
surface mail, $40.00

1 12 issues, other countries, air mail, $52.00

Outside U.S., pay via postal or international money order or
credit card; personal checks from non-U.S. banks will be re-
turned.

Address Changes

Subscribers who move may have the delivery of their most recent is-
sue(s) delayed unless MICROpendium is notified six weeks in ad-
vance of address changes. Please include your old address as it ap-
pears on your mailing label when making an address change.

- - - -

Check each item ordered (or list on separate page) and enter
total amount here:

Check/MO 1 (check one)
Card No.
Expiration Date

(Minimum credit card order is $9)
Signature

(Required on credit card orders.)

No sales tax on magazine subscriptions. Texas residents add 7.75%
i.ales tax on other items, including back issues and disk subscrip-
ions.

Mail to: MICROpendium, P.O. Box 1343, Round Rock, TX 78680

-

(Back Issues, $3.50 each. List issues;

No price breaks on sets of back issues. Free shipping USA. Add 30 cents, single
issues to Canada/Mexico. Other foreign shipping 50 cents single issue surface,
$1.50 airmail. Write for foreign shipping on multiple copies.

OUT OF STOCK: Vols. 1, No. 1-2; Vol. 2, No. 1
O MICROpendium Index (2 SSSD disks, 1984-1992),

Extended BASIC requiredcooevreeeeerrenreeeeeeniennens $6.00
Q MICROpendium Index IT (9 SSSD disks — 1 for each
year — 1984-1992), XB requiredccooeverererererenns $30.00
Q MICROpendium Index IT with MICROdex 99 (11
SSSD disks), XB required........cc.ccorverevereeerienseerererens $35.00
O MICROdex 99 (for use with MP Index II, 2 SSSD
disks), XB r€QUITEdccevevvreenererrerenerrarsnnssnnensesenes $10.00
Q MICROpendium Index IT annual disks ordered sepa-
rately (1 disk per year, 1984-1992); each........ccccoounu... $6.00

MICROdex 99, by Bill Gasklii, Is a collection of programs that allow users of MP
Index II to modify thelr index entries, as well as add entries. MICROdex 99 sup-
ports many other functions, including file merging, deletion of purged records,
record counting and file browsing.

GENEVE DISKS (SSSD unless specified)
O MDOS 2.0 (req. DSSD or larger (for floppy & hard drive sys-

LEITIS) .uerrereveneerssnesessersursarsasnessasinssrnosaserestssssaessasssnnnsersrassssasseones $400 %
J GPL1S$34.00
Q Myarc Disk Manager 1.50... ...$4.00
0 Myarc BASIC 3.0......ovcecreeerreniree e evvieerinesessssas $4.00
0 MY-Word V1.21 ...ttt eressaessensssss s $4.00
{d Menu 80 (specify floppy or hard disk versions(s); includes

SETCOLR, SHOWCOLOR, FIND, XUTILS, REMIND........ $4.00
GENEVE PUBLIC DOMAIN DISKS

Name These disks consists of public domain programs available from bulletin
boards. If ordering DSDD, specify whether Myarc or CorComp.
SSSD DSSD DSDD
Address O Series 1 $900 $7.00 $5.00
3 (X Series 2 $9.00 $7.00 $5.00
City O Series3 $9.00 $7.00 $5.00
Q Series 4 $9.00 $7.00 $5.00
zip
'?‘;at:et of numbers at the top of your mailing label indicates the 3 Series S 39.00 57.00 $5.00
e .
cover date of the last issue olp you)ll' subscripti%n. U Series 6 $9.00 $7.00 $5.00
Leem — —
SECOND CLASS

